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CHAPTER I

INTRODUCTION

I. GENERAL DESCRIPTION

The general subject of this dissertation is the problem of
nonlinear control of sampled-data systems. Only pulse-amplitude-
modulated systems are considered; the control signal u(t) being a
piecewise constant function of time, t, which is allowed to change
value only at periodic discrete instants of time T seconds apartjy T
is the sampling period. Such an input sequence is the output of a
zero-order sample-hold device. The control signal is limited in
magnitude by practical considerations. This type of control is known
as saturating amplitude control. An example of such a control signal
or sequence is given in Figure 1.

The dynamic system (plant) which is to be controlled is actuated
by a controller. Figure 2 shows the configuration in block diagram
form. The controller provides a control sequence, of the form of
Figure 1, which is to take the system from an arbitrary initial state
into (or close to) a desired state in a suitably prescribed manner.
The controller receives information on the state of the plant omnly at
discrete instants of time, T seconds apart. If the controller
generates the input sequence on the basis of the initial state only,
it will be called an open loop controller, and the corresponding input

1
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sequence an open loop control, If the input over the interval
kT ¢ t < (k + 1)T is computed from the state at time kT, k = 0, 1, ceey
then the control will be called closed loop control or feedback

control.

II. THE PLANT

The plants discussed in this dissertation are described by
linear constant coefficient differential equations. The nonlinearity
(saturation) is included in restrictions on the controller. It is
assumed that the plant is controlled by a single input and that it is
completely controllable (1, 2, 3, 4, 5, 6)*. Such a plant is commonly
described by its transfer function, Gp(s). Figure 3 shows the transfer
function representing the plant in block diagram form. The order of
the denominator polynomial, n, is the order of the plant; - )\i_and
-z, are respectively the poles and zeros of the plant. The plant may
also be described by either a single n-th order differential equation

or by n first order differential equations (4, 5, 6),

dxi(t) o
a? = Z aijxj(t) + di u(t)! 1= 1’ 2’ ceey N (1-1)
j=1

where aij and di are constants, In matrix notation

x(t) = A x(t) +d u(t) , (1-2)

*
Numbers in parentheses represent similarly numbered entries
in the "List of References."




*juerd °oy3 Jo uwoyjouny iajysueal |yl ‘¢ IInBIJ

T , 1=t
andano X+ ®) M d andut
- udDuw ¢ T = Amv 5 A v
(8)0 T - $)n
(2 +8)
<




where (-) denotes differentiation with respect to time. The vector
x(t) is an n-vector (an n x 1 matrix), d is a constant n x 1 matrix
and A is a constant n x n matrix. The vector x(t) defines a point in

n-dimensional Euclidean Space, :)C: » With x cees X the members of

1°
X, forming a basis or coordinate system for the space. For a given
control u(t) and initial point x(to) the solution, see Appendix A, of
Equation (1-2) describes a unique trajectory in X . given §(t°)
and u(t), §(t°) is sufficient to describe the behaviour of the plant
for any time t >»t°. For this reason x(t) is called the state of the
plant and :):; is known as the state space. The elements of X (xl,

ceey xn) are called the state variables of the plant (4, 5, 6).

When u(t) is a piecewise constant input

u(t) =u(k), k - IT gt <kT , k=1, 2, ..., (1-3)
the state of the plant at the discrete intervals of time kT, k= 0,
1, ..., is described by the following difference equation, derived in
Appendix A:

x(k + 1) = 6(T) x(k) + h(T) u(k + 1) (1-4)
where for convenience x(kT) is written as x(k). The matrix G(T) is
n x n and is known as the transition matrix and h(T) is n x 1 and is
called the forcing matrix. The plant is assumed to remain completely
controllable in discrete form, see Appendix A. The state trajectory,
moving under the influence of the control sequence u(k), k=1, 2, ...,
and the initial state x(0), are illustrated in Figure 4 for a second

order system.
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Figure 4. The state trajectory moving from x(0) to x(N) = 0
under the influence of the input sequence u(l), ..., u(N).




III. THE REGULATOR PROBLEM

The object of the control sequence u(k), k=1, 2, ..., is to
force the state of the plant from some arbitrary initial state x(0) to
some desired final state in a suitable manner. For the regulator
considered in this dissertation, it may be assumed that the origin of
the state space is the desired final state. Upon reaching the origin
the state will remain there if no further control signals are applied.
Such a control is an example of deadbeat control (1, 7). The term
""deadbeat control'" has replaced the older Z-transform terminology
"ripple-free error-free control" (8, 9, 10, 11, 12). The regulator
problem may be described in terms of three factors: the length of time
allowed for the regulatory process, the constraints on the process and
the specification of the performance (subject to the constraints).

These factors are discussed in turn.

The Time of Regulation

Let N be the total number of sampling periods allowed for the
regulation. That is, after NT seconds the state of the plant has been

forced from x(0) to x(N) and the regulation process is complete.

The Constraints

The desired final state is the origin of the state space;
x(N) = 0, and the control signal is limited in amplitude. Without
loss of generality the amplitude is limited so that

|u(k)| €1, k=1,2, ca, N . (1-5)




The Performance Specification

The performance is usually considered optimum when some suitable
cost function has been minimized. These cost functions are formulated
to represent some physical desideratum., For example it has become
customary to use the cost function

N

E= Z [u(k)] 2 (1-6)

k=1
to represent the energy consumed by the control, and

N

F = Z |u(k)l (-7

k=1
to represent the fuel consumption. The main body of this dissertation
will be limited to these two cost functions.

The three factors, time, constraints and cost function, which
define the regulator problem cannot be specified independently. For
example, minimizing the cost functions E and F has meaning only if
some constraint like x(N) = 0 is adjoined, and then only if there is
more than one input sequence that can take x(0) to the origin. In
Appendix A it is shown that if Iu(kﬂ £ 1, only a finite region of
initial states, those in the set r;, can be bought to the origin in
N sampling periods or less. It will be assumed in formulating the
regulator problem that N is always large enough for there to be a
solution.

The regulator problems treated in this dissertation may be

formalized as follows.
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Minimum Energy Problem

Given x(0) in FN find the input sequence u(k), k =1, 2, ...,
N, such that

N
x® =0, |uw|<1, aa E- Z [a0] >
=1

is minimized.

Minimum Fuel Problem

Given x(0) in [; find the input sequence u(k), k = 1, 2, ...,

N, such that

N
x(N) =0, lu(k)' <1, and F = Z lu_(k)l
k=1
is minimized.
IV. REVIEW OF THE REGULATOR PROBLEM

In order to place the particular problems chosen for discussion

in perspective a brief review of several allied prdblems is given.

The Deadbeat Regulator

The term deadbeat control means that the state of the plant is
forced to a desired state in a finite time, NT seconds, and remains
there for t > NT. If the desired state is the origin of I: then

for x(t) to equal zero for t 2 NT, u(t) must equal zero for t > NT.
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This deadbeat condition, x(N) = 0, is shown in Appendix A to be
equivalent to the constraint

N
O = ) oz u, (1-8)
=1

where the Ej are the canonical vectors described in Appendix A. If

the n x N matrix C is formed as
¢c= [21, Iys =ees _r,N] > (1-9)
and u = col. [u(l), u(2), eee, u(N)], Equation (1-8) can be written as
Cu=x(0) . (1-10)
Equation (1-10) is the condition that the control u transfer x(0) to

the origin in N sampling periods (13, 14, 15).

The linear deadbeat regulator. If the range of u(t) is not

constrained by saturation the linear deadbeat problem is: Find u
which minimizes a given cost function subject to C u = x(0).

In time-optimal control it is desired to find the minimum N
such that C u = x(0). If N< n there is no solution unless x(0)
happens to be a linear combination of the N canonical vectors El’ I,
cees Iy If N=n, C = R and for completely controllable plants the

inverse of R exisits, see Appendix A. The unique time~optimal control
sequence (7) is given by
u==r"1x0 . (1-11)
When N > n, there is an infinite number of control sequences

that satisfy Equation (1-10). The cost function which is to be



'--—--a--—au-n'*

12

minimized determines which the control seguences may be used. Only
one of these control sequences minimizes the energy cost function, E,
while in some cases many of the allowable sequences may minimize the
fuel cost function.

The generalized energy cost function is EFSAE (2, 16, 17, 18).
The transpose of a matrix is denoted by t. S is a positive definite
N x N matrix. This cost function is of importance because S can be
chosen to give a desired trajectory in the state space, and it is also

easy to handle mathematically. The generalized energy problem is:

minimize u 'S u subject to C u = x(0). The unique solution is

-1
Tet] (1-12)

- t
g=le [Cs
and is developed in Chapter II. Bertram and Sarachik (16) solved
this problem by using variational methods. They did not present the

details. Kalman, Ho and Narendra (2) identified the problem with the |

generalized inverse (19, 20). Revington and Hung (18) and more

recently, Yuji (21) reformulated and solved the problem using
elementary differential calculus. This method is given in Chapter II.
Cadzow (13) rediscovered Penrose's work (20), giving the solution
Equation (1-12) for the case with § the identity matrix.

The fuel cost function, Equation (1-7), has not recieved much
attention for discrete systems. Lee and Desoer (22) presented a
formal solution to the linear fuel problem:

N
minimize ZE: lu(k)l subject to C u = x(0).
=1
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The cost function is, in a mathematical sense, unsatisfactory because,
as is shown in Chapter II, there may not be a unique solution to the
problem. However, the practical importance of the fuel cost function

requires that the problem be investigated.

The deadbeat regulator with saturation. In this case the range

of u(t) is restricted as in Equation (1-5). The set of all (initial)
states that can be brought to the origin in N or less sampling periods
with saturating amplitude control is called f; and is discussed in
Appendix A. Kalman (23) defined the set and considered its properties;
his work was extended by Desoer and Wing (14, 24, 25). Kurzweil (26)
shows several of these sets for second order systems.

The deadbeat regulator with saturation is: Given x(0) in [qg,
find a vector u which minimizes a given cost function subject to
C u = x(0) and 'u(k)! £ 1.

The time-optimal, minimum fuel and minimum energy problems are
considerably complicated by the addition of the saturation constraint.
As a solution to the time-optimal problem, Desoer and Wing in a
planned series of papers (14, 24, 25) presented a method of construct-
ing a switching surface which gives a feedback solution of practical
importance for low order plants with real poles., Their methods were
recently extended to cover state variable constraints (27). Tou (28)
presented an open loop solution which works well in some cases,

Torng (29) used linear programming concepts. Koepcke (30) used the

digital computor to store information on the optimal input sequences

so that real time feedback solutions could be obtained.
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Ho (31) comsidered the "solution space', an N-dimensional
Euclidean space with coordinates u(k), k = 1, 2, ..., N. This space
is discussed briefly in Chapter III. With the input constraint, the
admissible control region is a hypercube centered on the origin. The
intersection of the hypercube with the (N-n)-dimensional hyperplane
C u = x(0) gives the feasible set of controls, whose members are
control sequences that will take the initial state to the origin and
satisfy the saturation constraint. 1In this formulation the time
optimal problem consists of finding the smallest N such that there is
an intersection between the hyperplane and hypercube, and then choosing
one of the feasible controls. The minimum fuel and energy problems
consist in finding from among the feasible controls one that minimizes
the appropriate cost function. Viewing the problems in this light,
Ho suggested that the fuel and energy problems were already solved
since they were respectively simple linear and nonlinear programming
problems. Torng (29) subsequently formulated the fuel problem and
Kim (32) the energy problem in this manner. Such programming
techniques (29, 30, 33, 34), however, are somewhat sterile in that
they fail to give insight into the problems and intrinsically cannot
suggest improvements to existing hardware. Furthermore, they cannot
be used in a closed loop form with the present day requirements of
real time solutions. Of course some control problems are so complex
that general digital computer techniques must be utilized (35). The
computer can be used to great advantage after all other avenues have

been explored.
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The most recent work on the energy problem is that of Stubberud
and Swiger (36) who attempted to solve the energy problem in the
solution space using intuition, functional analysis and set theory.
Unfortunately, their conclusions, as shown in Chapter III, are not true

in general.

Non-Deadbeat Control

This brief discussion of the regulator problem ought to mention
non~-deadbeat regulation. By removing the constraint x(N) = 0; i.e,
linear constraints of the form of Equation (1-10), and using cost
functions of the form

N

Z x(0° P x(k) + M [u(k)]2 s (1-13)
k=1

with P a non-zero positive semidefinite matrix and (L >0, non-deadbeat
regulators have been investigated. Kalman and Koepcke (1, 17, 37) and
others (5, 38) treated the linear case and Deley and Franklin (39)
considered the case with input saturation. Both solutions used dynamic
programming, which is eminently suitable if N is large. If N is small,
in the order of n, solutions in closed form are practical.

Perhaps the most interesting aspect of the non-deadbeat
regulator is that it is very closely related to the discrete estimation

problem (40, 41, 42).
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V. SUMMARY OF THE WORK

The object of the dissertation is to study the problem of
saturation in the minimum energy and minimum fuel deadbeat regulator,
and to provide where possible, practical implementation of the optimal
control in a feedback structure.

In Chapter II the theory of the linear energy and fuel problems
is developed and used to consider in detail first and second order
systems. Necessary and sufficient conditions for the uniqueness of
the fuel solution are discussed. Chapter III discusses saturation in
the minimum energy problem. It is shown that the open loop problem
reduces to finding which members of the control sequence equal the
saturation limit, +1. First order systems are solved completely as
are certain second order systems. Chapter IV considers the correspond-
Sem mimfomiem Frend mmald A MEae 3 e . .. . .
systems are solved,

Chapter V gives suggestions as to how the optimal strategies
may be implemented practically, in both open and closed loop forms.

In certain cases very simple optimal and suboptimal strategies can be
realized.

Appendix A provides the necessary background material for the
dissertation and includes a discussion of the invariant vectors.
Appendix B gives the derivation of some of the results used in Chapter

ITI.



CHAPTER II
THE LINEAR ENERGY AND FUEL PROBLEMS
I. INTRODUCTION

Having formulated the minimum energy and minimum fuel problems
in the canonical vector space, the derivation of the minimum energy
equations is given. These equations are then extended to cover the
generalized energy cost function discussed in Chapter I. A geometric
approach to these equations results in a graphical method for estimating
the minimum energy input sequence, which is particularly useful for
second order systems.

While the minimum energy problem is solved by differential
calculus, the minimum fuel problem is approached by considering a set,
SN(f). An ;
before its general properties are presented. The optimum input sequence
for first order systems can be solved without the explicit use of this
set, but the general properties of the set do provide the comfort of
rigor for second and higher order systems. In discussing first and
second order systems, it is shown that the input sequence is not
necessarily unique, Theorem 1 givés the necessary and sufficient con-
ditions for the uniqueness of the minimum fuel input sequence. Second
order plant pole configurations, for which initial conditions occur with
non-unique sequences, are investigated.

17
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The chapter closes with a detailed example of both the minimum

energy and minimum fuel problem.

II. FORMULATION IN ﬁ ~-SPACE

The linear deadbeat regulator with minimum energy is equivalent

to the problem,

N N

2
minimize E = Z [u(j)] subject to Z u(j) Ej = x(0) .
i=1 =1
(2-1)
The corresponding minimum fuel problem is,
N N
minimize F = Z |u(j)l subject to Z u(j) Ej = x(0) .
j=1 j=1
(2-2)

If the input sequence is arranged as the N x 1 column vector, N > n,

u = col.[u(l), u(2), ..., u(u)] , (2-3)

and the canonical vectors are arranged in matrix form as
C = [—‘-1’ Iys e EN] , (2-4)

where C is an n x N matrix, problems (2~1) and (2-2) become respectively:

minimize E = gt u subject to Cu = x(0) ; (2-5)
N

minimize F = Z Iu(j)' subject to Cu = x(0) . (2-6)
j=1

The transformation of these problems to the canonical vector

space, C » can be considered in the following manner. Let C be
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partitioned as
c=[re] 2-7)
where
R = LEI’ Iyy eees En] ’ _ (2-8)
Q= ;£n+1’ Loi20 *oos EN] . (2-9)
Let u be partitioned into
a = col. [u(l), w(2), ..., u(n)] , (2-10)
b = col. [u(n + 1, u(n+ 2), ..o, u(N)] . (2-11)
The deadbeat constraint, Cu = x(0), becomes
= = [&, q] |2 : (2-12)
L}
=Ra+ Qb . (2-13)
Premultiplying Equation (2-13) by R-l, and defining
c=r1xO (2-14)
H=RTQ , (2-15)
gives
N
c=a+H-= Z u(j) h, R (2-16)
j=1

&
where the "invariant vectors'" are

h. =R r. ’ j=1, 2, ooo,N -

%*
The h, vectors so defined are different from those used in
references 152 18, 45 and 48.
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Thus, the nx(N - n) matrix H is composed of the last N - n invariant

vectors (Appendix A):

H = {1‘1&1’ hoos eees 31\,] . (2-17)

Equation (2-16) is the deadbeat constraint in tZ -space. In

future the state space, :X: s will be referred to only occasionally.
I1T. THE MINIMUM ENERGY PROBLEM

Problem (2-5) becomes,

minimize E = gtg + _ch subject toc =a+ Hb . (2-18)

The solution is as follows:

E=a‘a+bDb (2-19)
= [e - m] e - m| +2 (2-20)
= cfe - 2" we +pf |1+ e . (2-21)

Taking the gradient of E with respect to b (5, page 45; 43, page 45)

gives

i

VRE

Setting ‘7LE

2[1 + HtH]R - 2% . (2-22)

0 gives the condition for E to be a minimum. Therefore,
the optimum b, 2?, is given by

[1 + th]go =8 . (2-23)
From Equations (2-16) and (2-23) with the optimal a given by g?, there

results

=Hua®+8'm° . (2-24)
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Therefore, the condition for minimum energy in the linear deadbeat
regulator is simply (15, page 8; 21, page 836)
5% = 5%® . (2-25)
From Equation (2-16) and (2-25),
[1+m)a’-c . (2-26)

Since the system is completely controllable any n, and only n, of the
invariant vectors are linearly independent. This means that H is of
maximal rank. It follows that the n x n matrix in Equation (2-26) can
be inverted and is in fact positive definite (18, page 13). Then

a®= 1+ HHt]-l c (2-27)

and from Equation (2-25),

-1
p° - [remf] o . (2-28)

Alternatively, from Equation (2-23),

-1
b° = [1 + th] g . (2-29)

Greville (44) and Cadzow (13) obtained the solution to the same
problem in a different form which can readily be obtained from

Equations (2-27) and (2-28). Equation (2-27) gives, with Equation

(2'7):
1t -1e1° Y a1
a® = [I +RQQ° R ] R x(0) , (2-30)
| -1
- [2 et + @] xx@ (2-31)
-1
_ {RRt + th] x(0) . (2-32)
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Equation (2-28) gives
o t _-1lt[__ t 17!
p° = ot R [m" + o0t] x(@) (2-33)
tf. t et
=Q [RR + QQ ] x(0) . (2-34)
Combining Equations (2-32) and (2-34) gives
a° th -1
W= |7 | = [RRt + QQt] x(0) , (2-35)
b° Qt
t e17t
- & o [® 0@ O] x , (2-36)
e e17!
-c [cc ] x(0) . (2-37)

This solution is certainly more compact than the solution given
by Equations (2-27) and (2-28). However, the solution in ti -gpace
is much more useful because it is independent of the state space
coordinate system, Furthermore, Equation (2-25) allows very useful
geometric pictures to be used in considering both the linear and
saturating minimum energy problems.

. e o . .
The minimum cost, E , in :I:'space is

-1
E® = u®f % = x(O)t[CCt] x(0) , (2-38)

and in t; -space, is

-1
© °t§_°+b°t_lgo=_c_t[I+HHt] c=cta®. (2-39)

The Generalized Energy Cost Function

. t -
Consider now the cost function u Su, where S is an N x N

positive definite matrix. The solution given in Chapter I, Equation
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(1-13), can be obtained from Equation (2-37) in a straightforward
manner,
It is always possible to obtain an invertible N x N matrix, D,

so that S may be written as

S=D D ’ (2-40)
giving

u"su=u"D"Du . (2-41)
Define

v=Du . (2-42)

The generalized energy problem, minimize‘gtSE subject to Cu = x(0), is
therefore equivalent to the problem, minimize XFX subject to CD-¥Z =
x(0). The solution to this latter problem is obtained from Equation

(2-37), and is

-1
t t
v° = (e ’h [cn'l(cn'l) ] =@ (2-43)
F e e -7 -11% ¢ -
= l_D] c |cp [D ]c x(0) . (2-44)
Using Equations (2-40) and (2-42),
1t -1e7t
w=s5"¢ [cs c] x(0) . (2-45)

This is the solution to the generalized energy problem.

The cost function EfSE is very practical. By a suitable choice
of S, factors such as the risetime and overshoot can be made to meet
practical specifications while maintaining the deadbeat response (18,
page 10). The dynamic programming approach (17), which has similar

advantages, is not deadbeat.
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Geometric Interprétation and Solution of the Energy Problem

A graphical method (45) of finding the input seqneuce for a
given initial state c will be described for second order systems. The
concepts are equally applicable to higher order systems.

The set of all initial states that give uo(j) = constant is seen
to be a hyperplane. The equation of the hyperplane may be found directly
from Equation (2-27) or Equation (2-28). If the lines uo(j) = 0 and
uo(j) = 1 are drawn in {Z -space, the j-th control can be found for a
given initial state ¢ by linear interpolation or extrapolation. A
method of obtaining these lines without solving the equations directly
can be approached through the use of an auxiliary space, ,/&f-space.

Consider the n inputs uo(l), uO(Z), coes uo(n) as the coordinates

o
of an n-dimensional Euclidean space, /x\ -space. The transformation
between fz and /gz is given by Equation (2-27),

3? = [I + HHt] -1‘3 .

For second order systems (n = 2), h; go = uo(j), i=1, 2, eeey, N
are lines and are normal to the corresponding vectorlgj. For u(j) = 0
the line passes through the origin. For uo(j) > 0 the line moves in
the direction of +§j and conversely for uo(j)<i 0. When uo(j) = 1 the

line intersects‘gj at a distance llﬂej from the origin, where

_ ot 1/2 -
ﬁj—qn_j npt? (2-46)

is the length of hj' Figure 5 shows the configuration. After plotting
these lines for j =1, 2, ..., N, the structure of the optimal control

sequence may be investigated.
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Figure 5. The invariant vector P—j in A -space.
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o
It remains to link the lines in /&~ to the initial states in
fi . From Equation (2-27), or directly from Equation (2-16),
N
c=2a"+m° = Z @ by . (2-47)
i=1
By considering two convenient points on the lineAgg 2? =1, the

corresponding 3? and E? can be estimated. The corresponding ¢ can be
constructed in C: by adding together the vectors uo(j)‘hj.
In actual practice there is no need to draw two diagrams., The
o
lines in /&; can be drawn directly in ‘C; by imagining that the coor-

dinates uo(l), ceey uo(n) replace the coordinates Cys sees C o The

construction lines may be ignored once uo(j) =1 has been drawn in fi .

This technique is of course practical for first and second order
systems only, but the principle holds for any n. The control sequence
can be estimated quite accurately if N is not too large, but even if
the technique cannot be used to obtdin the control sequence exactly, a
rough idea of the structure of the control can in itself be very useful,

The technique is used to advantage in Chapter III.
IV. THE MINIMUM FUEL PROBLEM

The minimum fuel problem, Problem (2-6), is
N ‘ N

minimize F = lu(j)l subject to ¢ = ZE: u(j)‘p_j . (2-48)
i=1 i=1
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Introductory Discussion

Since the fuel cost function F cannot be handled by conventional
differential calculus, the general properties of the minimum fuel
sequence are introduced by considering a second order system with a
settling time of three sampling periods; i.e, n = 2 and N = 3. The
most important characteristics of the input sequence can be demonstrated

with the plant

1
GP(S) = '8—2 . (2_49)

Figure 6 shows the invariant vectors El’ Ez, and 23 for this plant.

The characteristics of the input sequence will be examined by comsidera-
tion of three initial states.

l. Consider the initial state ¢ = h One possible input

1.
sequence, satisfying the constraint in Problem (2-48), is clearly

u(l) =1, u(2) =0, u@) =0, (2-50)

]

and the fuel cost is F = 1. 1Is there another input sequence that
satisfies the constraint and costs less fuel? In an attempt to reduce
the cost, u(l) must be reduced. Suppose u(l) is reduced to a: u(l) = Q,

0 < a <1, Then since

Z u(j) hj =h =c , (2-51)

u(2) and u(3) must satisfy

hl(l -Q) = u(Z)EZ + u(3)23 . (2-52)

Therefore,




Figure 6.

28
€2 4
h
3 2 [ﬁ]
h
L\ 2
\
\
\
\ O ‘ -
0 \ // 2 Clv
\ ~
A
) V4
f// \\ 1<
\
\
\

The invariant vectors h

21

Ez and h, for the plant 1/82.
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v =17 ju(2) 1
= 1-a , (2-53)
1 2| |u@3) 0
which gives
u(2) =2 « 20, u@3 =-1+a . | (2-54)
The fuel cost is therefore
F = [u(l)] + |u(2)| + [u(3)|
=3 -2 . (2-55)
For 1 3 a »0, F3 1. This means that the input sequence, Equation
(2-50), is a unique optimum input sequence for c= hl'
2. Consider next the initial state c= 22. Possible input
sequences are seen to be
u(l) =0, u(2 =1, u@3) =0,
WD) =3, @ =0, u® =7,
(2-56)
s =3 uw@ =3 uB) =1,
w) =3, w@) =1, uwd) =3,

and again F = 1. Letting u(2) = a, 0 @ €1 in an attempt to find a

sequence with less fuel consumption, the deadbeat constraint is,

hy = u(l) by +ahy +u@3) by . (2-57)

Therefore, on solving for u(l) and u(3),

Q

W =3-%, w-=3-%,

[X]e.

(2-58)
and

(2-59)

rxi
il
N =
1
NIR
+
N
'
NIR
+
Q
[}
=
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Therefore F is independent of @, 0 € @ £ 1, and there is comsequently
no way of obtaining an input sequence with F < 1. The non-unique
minimum fuel solution is therefore

aD =52, uw@=a, @) = <

(2-60)

3. As a final example consider an initial state ¢ on the line

joining El and 533. Such a state can be described by

c= ul,hl ) 23 > Hys Mo >0, Hq + My = 1 . (2-61)
One possible input sequence is

u(l) = ul s u(2) = 'uz s u(@3 =0 , (2-62)

and F = 1. 1Is it possible to find another input sequence giving a
smaller fuel cost? Let c, shown in Figure 6, page 28, be a typical
initial state given by Equation (2-61). Now consider states on the
dashed line joining:r_l_2 and -23. With u(l) = 0, such states can be

taken to the origin with a minimum fuel cost F = 1. Similarly, with

u(3) = 0, states lying on the dashed line joining h. and -h, can be

1 2

taken to the origin with minimum fuel cost F = 1. Now the initial state
c may be represented by linearly combining either Bl and 22, or‘E2 and

33, or h, and 23, or finally, hl’ 22 and h,. Considering Figure 6,

1 . 3
page 28, the combination ofh1 and_tl2 would require a fuel cost exceed-
ing F = 1, since ¢ lies beyond the dashed line joining El and -32.

Similarly, since c lies beyond the dashed line joining hz and .EB’ the
second combination, 52 and 33, would also require F > 1. The third

combination gives the input sequence of Equation (2-62), which makes
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F = 1. It therefore remains to see if any reduction in fuel cost can
be obtained if all three invariant vectors @1, h, and 23) are used to
represent c. Suppose u(2) is fixed at some value, @. The representa-
tion of ¢ is therefore

e-ah, =u(l) b +u@3) by . (2-63)

If @ = 0, Equation (2-61) gives u(l) = p, and u2) = “Hyo with F = 1.

1

If o is increased from zero, c - @ EZ moves from ¢ along a straight

line at c and passing through -33. Similarly if « is decreased from
zero, ¢ - Q _112 moves from ¢ and passes through 31. With ¢ given by
Equation (2-63) therefore, the fuel cost is never less than F = 1 + | a|.
Therefore, the optimum input sequence, for an initial state on the line
joining 31 and -‘_113, is uniquely given by Equation (2-62).

The results on these initial states can be combined and extended.
Before proceeding, however, it is necessary to know what is meant by
a "cone." A cone is defined as follows (46, page 219): A cone is a
set of points with the following property: if c is in the set, so is
pc for all u 2 0.

Consider the set of points, L(+i, +j) on the line joining + hi
to ihj’ i # jo The dashed lines in Figure 7 show L(i,j), L(j,-i),
L(-i,-j) and L(-j,i) for a typical pair of invariant vectors Ei and Ej’
The cone '"generated" by the set of points L(+i, +j) is defined to be
the set

C(+i, +j) = {y|y = nc, all p > 0 and all c in L(*i, 1) |.

(2-64)
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Figure 7. The cone C(+i,+j) generated by the line L(#i,+j).
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For example, the come C(i,j) is the cross hatched region indicated in
Figure 7. Further, note that, taken together, the four cones C(i, j),
C(j,-i), C€(~-i,-j) and C(-j,i) cover the entire fi -space.

Now consider the example again. The 'smallest" convex set which
contains the points iﬁhl, iﬁhz,;tﬁQB, where £ > 0 is called SB(f) after
the notation of Lee and Desoer(22). The boundary of S3(f) is called
553(f). Figure 8 shows the set S3(f) and its boundary 583(f). Figure
9 shows Ci -space divided into six regions by the conmes C(+i, +j), i,
i=1, 2, 3.

Although, for the sake of simplicity, the initial states discussed
above were assumed to lie on 583(1), the characteristics of the optimal
input sequence when the initial state lies on 853(f) are identical
except that the input members are f times greater and F = f. Therefore,
when ¢ lies on BS3(f), the following observations can be made:

1. If ¢ is in €(1,2) or C(2,3), C(-1,-2) or C(-2,-3), the
optimal control sequence is not unique. If ¢ is in C(-3,1) or C(3,-1),
the optimal control sequence is unique.

2. The optimum fuel cost is F = f,

3. An optimum input sequence can always be found by using an
input sequence with only one or two non-zero members. For example, if
¢ lies in C(i,j), i,j = +1, +2, +3, the input sequence can be obtained
by representing c as

cC = ul -l-l»]'_ + “2 hj, i,j = 1, 2, 3 ’ (2"65)

with
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833(1)

553(f)

ﬁ’/
'

fh c

b o e e - -

Figure 8. The boundaries 883(1) and 853(f) for the plant 1/52.
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C(~-2,-3)

Figure 9. The cones C(+i,+j), i,j = 1, 2, 3, for the plant llsz.

-
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u(i) = pp, WD =y w) =0, k#1,5. (2-66)
If the state lies in a cone where the sequence is not unique, this rule
may not be the best choice because of practical considerations. The
shape of the trajectory or the ease of synthesizing the input sequence
will help to determine which sequence is to be chosen.

These results can be extended to n-th order systems with a
regulation time of N sampling periods. The minimum fuel input sequence

is obtained via consideration of the properties of the set SN(f).

General Properties of SN(f)

SN(f) is defined as the set of all initial states that can be
taken to the origin in N sampling periods with a fuel consumption F < f.
Then

N N
SO = lele= ) w@hs F= ) || <€) . @D
j=1 j=1

The following properties of SN(f) are proved by Lee and Desoer (22).

1. For f real and positive and for any integer N, SN(f) is a
convex set, contains the origin as an interior point, and is symmetic
with respect to the origin.

2, 1f CN(f) is the set of 2N points ﬁgj, —ﬁhj, j=1, 2, eeey, N,
SN(f) is the convex hull (46, page 207) of CN(f). The convex hull of a
set of points is, intuitively, the smallest convex set containing the

points.
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3. Let BSN(f) denote the boundary of SN(f). For a given ¢, let

f increase to f* so that ¢ is in SSN(f*). Then £ is the minimum fuel
cost for the given c.

4. If ¢ is in BSN(f), u(l), u(2), «ee, u(N) is an optimal input

sequence if and omnly if

N N
c= }: u(j) _EJ- > Z u(j) = £ . (2-68)
=1 =1

5. Suppose ¢;, €y, ..., ¢ are distinct points on BSN(f) and lie

on a common supporting hyperplane, jS . Let c be given by

n n
e= ) g s om0, ) wmo=1 . (2-69)
k=1 k=1

1f uk(j), j=1, 2, eee, N are optimum for ¢, , k=1, 2, ..., n, then

n

Z My uk(j)’ i=1, 2, eeey N , (2-70)
k=1

u(i)

are optimum for c.
These properties can be used to generate an optimum input sequence.
The method of synthesis in the general n-th order case will become

evident after consideration of first and second order systems.

First Order Systems

The optimum input sequence for first order systems can be obtained

without recourse to the properties of SN(f). For the first order plant
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G (s) = ——— 2

p S) = s +X b4 ( -71)
the invariant vectors are given by (Appendix A, Equation (A-49)),

j=1 .

h = e(I-DAT j=1, 2, eu., (2-72)
which are scalars. The length of_lzj is therefore

{. = DAT j=1,2, ce. . (2-73)

j s
For stable plants A 3 0, and therefore, {j P {k for j > k. If

A =0, -@1 ==<€2 = .ee = 1. Figure 10 shows the invariant vectors for
A> 0.

The minimum fuel problem is to find what proportion, u(j), of
each invariant vector Ej’ j=1, 2, ..., N, should be taken so that
when they are added together, they reach c with the least cost F. In
the linear case there is no limit on the amount of each that may be
used. The solution is clearly to use only the longest available
invariant vector to reach the initial state., For a given N, N=1,

2, «e., if A > O the longest vector is he. If X = 0, all the vectors
are of unit length, and as long as all the u(j) are of the same sign,
it is immaterial how they are combined to reach c. If A < 0, corre-
sponding to an unstable system, the first vector,‘p_1 = 1 is the longest
vector. The minimum fuel solutions are therefore:

1. A > 0; the unique solution is

a(l) = u(2) = eoe =u - 1) = 0, (@) = /e N DAT (-7

2. A = 0; there is no unique solution. Possible solutions are
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.
~ — + + -
0 2 3

Figure 10. The invariant vectors for the first order system of
Equation (2-71) with A >0, shown vertically displaced for clarity.
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u(l) = u{2) = ... = u(W) = c/N, (2-75)
u(j) = ¢ for any one integer j in 1, 2, ..., N . (2-76)
3. A < 0; the unique solution is
u(l) =c, u(@2)=u@B)=...=0 . (2-77)

These results make good sense when it is noted that with X > 0, the
state of the plant is moving into the origin of its own accord, and the
longer it is allowed to do so, the less the cost of completing the
regulation. With A < 0, the free motion of the plant is away from

the origin, so that the correcting force should be applied immediately.
In this case the minimum fuel solution is also the minimum time solution.

Except for the case A = 0, pure integration, the solution is unique.

Second Order Systems

The set SN(l) is the convex hull of the set of 2N points‘hj,

-hj, j=1, 2, «u., N (see page 36). 1In general therefore, not all of
the points i.hj, j=1, 2, ..., N, will lie on BSN(l), the boundary of
SN(I). It is necessary to distinguish between the invariant vectors
that lie on BSN(I) and those that lie in the interior of SN(I). There~
fore, let K denote the set of all distinct integers k such that Ek lies
on BSN(I). Denote by p the number of members of K;  there are therefore
N - p invariant vectors in the interior of SN(l).

Let the 2p distinct line segments, Ls(ti, +j), i, j in K, which
together form the boundary of SN(l), generate the corresponding 2p
cones Cthi, +j). These cones cover the entire ti -space, Figure 11
shows these cones for a typical second order system with N = 5. The

vectors h., and h

) are shown interior to 85(1) and, therefore, p = 3.

1
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Figure 11. The cones Cthi,tj) for a typical second order system.
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Without loss of gemerality, it may be assumed, for notational
convenience, that K contains the integers 1, 2, 3 and 4, and that 31,
-32’ 23 and 24 form adjacent cones Cs(l, 2), CS(Z, 3) and Cs(3, 4) as

shown in Figure 12, Furthermore, suppose that the initial state c lies

in BSN(f) in the cone CS(Z, 3). Then c can be represented as

L= Ky El + Hy S5 Hys Hz} 0, Hq + Ho = 1, (2-78)
where
5 = f.tiz s & T fl1.3 . (2-79)

From Equation (2-68), optimum input sequences for the initial states

5 and &, are seen to be, respectively,
ul(j) =f S 25 ° j=1, 2, vaey N, (2-80)
(M =£8;, . 1=L2 .., ¥, (2-81)

where S ij is the Kronecker delta,

1, i=j
S - . (2-82)
Hoole, i f

Therefore, from Equation (2-69),

u(l) = 0, u(2) = £y, u(3) = £y, u(4) =0, ..c, u) =0

(2-83)
is an optimum input sequence for the initial state ¢ given by Equation
(2-78).

More generally, if ¢ is in the come Cs(ti, +j), i,j in K, and is

represented by
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Figure 12,

initial state c lies in the cone CS(Z,B) on the line

Examination of the fuel optimum seq;?nce when the
2‘
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€ =4y b+, EJ- > (2-84)
the minimum fuel input sequence is
w(@) =py 5 uwld) =y, u@ =0, k#4,j. (2-85)
The uniqueness of the input sequence is considered next. As
shown in Figure 12, page 43, let 51 be the line through fEl and flx_z,

‘@ 2 be the line through fEZ and fh3, and _@_ 3 be the line through fBB
and fﬁz,‘ Without loss of generality, as before let ¢ lie in the cone
CS(Z, 3). Then the uniqueness of the optimum input sequence is given
in the following theorem:

Theorem 1. For second order systems, with c in CS(Z, 3), the minimum

fuel input sequence is unique if, and only if,
., &,# &, - (2-86)

Proof. Suppose § 9 = i_l’ Then ¢ can be reached with minimum cost
by using, in Equation (2-84), 33 and EZ or _}13 and El' Suppose § 9 =

53. Here ¢ can be reached with minimum cost by using either 23 and
EZ or 11_4 and EZ in Equation (2-84). Therefore, necessity is proved.
Consider ¢ = & = fl’.z' Equation (2-80) gives an optimum input
sequence u(2) = £, u(j) =0, j=1, 3, .ee, N. This is the unique
optimum control, since if u(2) is less than f, and §2 # él’ € can
only be reached by using additional invariant vectors, which gives a

total fuel consumption greater than f. Similarly if c =c, = fp_B, the

2
optimum control sequence u(3) = £, u(j) =0, j=1, 2, 4, ..., N, is
unique if @ 2 # §3. If ¢ is given by Equation (2-78), the optimum

input sequence of Equation (2-83) is unique if § 1 # _@2 # §3, since
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any other sequence gives a fuel cost greater than f (compare the intro-
ductory discussion on the minimum fuel problem). Thus sufficiency has
been demonstrated.

Although the Theorem as stated is only concerned with uniqueness
for second order systems, the extension of the Theorem to higher order
systems is conceptually clear. In general BSN(f) is a polygon in n-
dimensional Cj -space. Each face of the polygon has corners at the
points iﬁgk, k in K. The initial state c, in BSN(f), lies in one of
these faces. Let this face be contained entirely in some hyperplane;
i.e., any point in the face lies in the hyperplane, then the input
sequence is unique if and only if no adjacent face is also contained
entirely in the hyperplance.

The Theorem has immediate use. The synthesis of the control may
be made easier by choosing one particular sequence from the alternative
input sequences, and it may be that some additional performance criterion,
such as time or energy, can be minimized to advantage. It is, therefore,
of interest to know what plant pole arrangements give non-uniqueness.

Second order systems are now examined to ascertain when non-

uniqueness can occur.

Pole combinations for a non-unique input sequence. If the poles

of a second order system are real, the invariant vectors, Ej’ h =3,

4, ..., lie in the second quadrant of fi -space. With complex poles
they can lie in any quadrant (Table I, Appendix A, page 252). Real poles
will be discussed first, and then complex poles. Only stable systems

will be considered; unstable systems can be treated in the same manner.
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A. Real poles. Figure 13 shows the invariant vectors for a
typical second order plant of the form
G (s) = : s A A, PO (2-87)
p G+ ADG+ Ay 1 M2
If the plant has one or two integrations, it is easily shown that the
points Ej’ j=1, 2, ..., lie on the line ¢y +c, = 1. Figure 14 shows
the invariant vectors for the plant
1
G (s) =5 (2-88)
P
s
Figure 15 shows them for the plant
G (s) = ——e——o . (2-89)
P s(s + A,)

The cross-hatched regions in Figures 14 and 15 are, therefore, the
regions for which the initial state has no unique optimum input.

If the plant does not have any integration; i.e., 7\1, )\2 >0,
initial states with non-unique fuel optimum input sequences can still
occur, although in a different manner. It can be shown that the slope
of the line h, -h., j=1, 2, ..., becomes less negative as j increases:

i+l =]

see the dashed line connecting hl’ 32, E3, EA and ES

However, uniqueness depends on the shape of the boundary of SN(f),

in Figure 13,

equivalently SN(I). Consider N = 3. While the point 33 cannot lie on

the line ¢y + c, = 1, the point fba can, Figure 16 shows the arrange-

ment and the corresponding set of initial conditions with non-unique

input sequences. From Equation (A-50),
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Figure 13,

The invariant vectors for the plant of Equation (2-87),
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Figure 14. The invariant vectors for the plant of Equation (2-88).
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\
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Figure 15. The invariant vectors for the plant of Equation (2-89).
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sequence when -33 lies on the line < + c, = 1,

Figure 16, Initial states with a non-unique minimum fuel input
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¥ ¥
-e e
by = » ¥y =N %) = AT Ay, X, > 0.
1. ¥
e + e
(2-90)
The condition for fEB to lie on c1 + cy = 1 is then
¥ X b 4 .4
e loe 2. o210 . (2-91)

Figure 17 shows the solution to Equation (2-91) in graphical form. The
asymptotes e 1 1 and e z_ 1 correspond to the cases where the plant
has an integration.

If Equation (2-91) is satisfied by the plant and N > 3, the
solution will always be unique since the Bj’ j=4, 5, .c., for such a
plant cannot lie onc, + ¢, =1, and h

1 2

Figure 18 illustrates this for N = 4.

1 will no longer lie on BSN(I).

In general, for a given N, non-uniqueness for second order plants
given by Equation (2-87) occurs if -hN lies on the line ¢, te,= 1.

The condition for 1EN to lie on 2 tc, = 1, N=3, 4, ..., is obtained

with the help of Equations (A-52) and (A-53). The plant poles must be

such that, for N = 3, 4, ...,

N2 - (N=2-i) ¥ +i Y N-3 (N-2-i) ¥ +(i+1) Y
2 1 2 1
1+ e - e = 0.
i=0 ] i=0
(2-92)
When Xl = XZ = Y, Equation (2-92) reduces to

- 20e®DYE _ y o n®DE [y _o, N=3, 4, ... .(2-93)
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Figure 17,
(2-91).

N
w
~1
[V,
(<))
[

Graphical solution to the non-uniqueness of Equation
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Figure 18. An example of the case when only three of the

invariant vectors lie on the line c1 + c2 =1,
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When N = 3, the value of ¥ > 0 which satisfies Equation (2-93) is
X = 1og.e(1 + J2'). As N increases the corresponding ¥ decreases in

a strictly monotonic manner.

B. Complex poles. With @ and f real, let

X1 ) X2

e =+ iB, e =a- 3B . (2-94)
From Equation (2-91), the condition for 1123 to lie on ¢y + c, = 1 is
then

F+pl-241=0 . (2-95)
Therefore, + 23 lies on c,te,= 1 when

’ 2

@-1n%+pt=0 , (2-96)
and - 23 lies on 1 + cy = 1 when

@-1n2+pe=2 . (2-97)

Since a and B are real, Equation (2-96) has no solution. The non-
uniqueness, therefore, occurs when Equation (2-97) is satisfied by the
plant poles. The semi-circle of Figure 19 shows the permissible values
of @ and B that do satisfy Equation (2-97).

If N > 3, the problem of finding pole locations which give non-
uniqueness is complicated by the fact that the invariant vectors can lie
in any of the four quadrants of ti -space. However, second order plants
can always be checked for uniqueness by actually drawing the set SN(l)

for the given plant poles.



55

Figure 19. The values of o and B that give non-uniqueness of
the minimum fuel input sequence when the plant has complex poles, for
the case N = 3,
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V. EXAMPLES

Two simple examples will now be discussed in order to show how

‘the minimum fuel and energy theory may be applied in practice.

Consider a trolley of unit mass rolling on rails, propelled by
either a battery driven d.c. motor or by gas jets, At time t = 0, the
position and velocity of the trolley are given as xl(O) and x2(0)
respectively. The trolley‘is to be brought to rest in no more than four
seconds; 1i.e., x1(4) = XZ(A) = 0.

The driving force (torque) at the driven wheels is directly
proportional to the current supplied by the battery; the energy supplied
by the battery is proportional to the square of the current. With the
jet propelled system, ejecting gas at a fixed nozzle velocity, the
driving force is proportional to the rate at which mass is ejected. 1In
the case of the battery driven trolley, the least energy is to be used
in bringing the trolley to rest., With the jet-propelled trolley, the
gas consumption is to be minimized.

The differential equation describing the motion of the trolley

is

== u(®) (2-98)
dt

where, in the battery powered case u(t), the driving force, is propor-
tional to the current, and in the jet powered case, u(t) is proportional

the the rate of mass (gas) ejected.
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The energy supplied by the battery is proportional to
4
f o?(t) dt (2-99)
0
and the mass of gas expelled is proportional to
4
f luce)] ac . (2-100)
0

The control, u(t), is required to be the output of a sample-hold
device, with a sampling period of T seconds. The vector difference
equation describing, at each gampling period, the motion of the trolley
under the influence of piecew{se constant inputs is therefore, (see

Appendix A)

T
x (k + 1) 1T | x® g—
- + u(k) . (2-101)
x,(k + 1) 0 1 x, (k) T

The position and velocity of the trolley at the k-th sampling instant
are respectively xl(k) and xz(k). The canonical vectors, defined by

Equation (A-19), are

2

. T

(25 - 1) 5
Ej = - ’ j = 1’ 2, LE X Y (2‘1021

-T
so that, from Equation (2-8),
3y

2 2
R = . (2-103)

-T -T
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Let the sampling period be T = 1, and let the given initial state be
2
x(0) = . (2-104)
-2

Figure 20 shows the relationship between the canonical vectors and

x{0) in the state space. Only the first four cancnical vectors are
needed, since with T =1, N = 4, The dashed line in Figure 20 shows how
the trolley would move if no control forces were applied. Equation
(2-14) transforms the initial state x(0) into ti -space, giving

1
c = . (2-105)
1

Figure 21 shows c and the first four invariant vectors in ti -space.

Minimum Energy Example

The optimum input sequence can be obtained by using either the
graphical technique described earlier in this chapter, or the minimum
energy equations, Equations (2-27) and (2-25). The graphical method is

used first.
. A . t o t o
Figure 22 shows, in -space, the lines ngQ =1, hj‘g =0
for j=1, 2, 3 and 4. The line uo(l) =1 in Ci -space is found by
transforming graphically the points A and B from /&h into Ci « Other
points onlhi 3?

most convenient., Figure 23 shows, by means of the dashed construction

= 1 could be used; however, A and B are perhaps the

lines, how the points A' and B' are generated from A and B. For example,

B' is found by adding b/(a + b) 33 to the point B (a and b are shown in




|

59
x, §
[l
14
+ -
4 X

- Figure 20. The canonical vectors and the initial state x(0) for

the plant of Equation (2-98).
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b, 3 1
h-3 2 4+
o x ¢
b,
{ ¢ -} } -
-2 -1 0 1 2 ¢y
-1 4

Figure 21. The invariant vectors and the initial state c for
the plant of Equation (2-98).
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u’(4) =

i
o

1
(=]

) =

Q) =1

Figure 22. The lines u’(j) =1, j =1, 2, 3, 4 and u°(j) = 0,
j =3, 4 in AX° -space for the plant of Equation (2-98).
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Figure 23. The generation of the lines uo(j) =1 in
for the plant of Equation (2-98).

uo(l) =1

(f -space
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Figure 22, page 61). Figure 22, in fact, is not actually needed for the
generation of the lines uo(j) =1 in .ti -space: as mentioned earlier,
the coordinates of tf -space can serve the dual purpose of supporting
both /X\ -space and 6 -space.

The lines uo(Z) =1, u°(3) =1 and u°(4) = 1 are obtained in a

similar fashion and are also shown in Figure 23, Therefore, by inter-
polation and extrapolation, the optimum input sequence can be estimated.

The approximate input sequence is, therefore,
11, @)= 0.68, u(3)=~ 0.3, u®@)~ -0.1 .
(2-106)
Equations (2-27) and (2-25) will now be used to calculate the

exact optimum input sequence. From Equation (2-17), the matrix H is

-1 -2
H= , (2-107)
2 3
and
0.7 0.4
el
[1 + HH ] = . (2-108)
0.4 0.3
Therefore, from Equation (2-27),
u®(1) 0.7 0.4 |1 1.1
a® = = = (2-109)
u®(2) 0.4 0.3} |1 0.7

and from Equation (2-25),
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Mo 1 T I
u (3) -1 21 11.1 0.3
b’ = = = . (2-110)
u®(4) -2 3]]0.7 -0.1
The graphical method compares quite well with the exact calculation.
The energy cost, from Equation (2-39), is
o t o
E-=c¢c a =1.8 . (2-111)

Minimum Fuel Example

Figure 24 shows the set 54(1). The minimum fuel input sequence
is not unique since c lies in the cone Cs(l,Z). The time optimum
minimum fuel input sequence is clearly obtained when c is represented
by _1_1_1 and _I}_Z:

w(l) =1, u@) =1, u@) =0, u(s) =0 . (2-112)
The other two possible input sequences are obtained when c is represented

by either h. and 23, or by h, and h,. The sequences are respectively;

1 1 -4
u(l) = 1.5, u(2) =0, u(3) = 0.5, u(4) =0, (2-113)
u(l) = 5/3, u(2) =0, u(3) =0, u(s) = 1/3. (2-114)

The fuel cost is F = 2,

In conclusion, Figure 25 shows the four trajectories in the
state space :x: . Trajectory (a) is the minimum energy trajectory, and
trajectories (b), (c) and (d) are the three possible minimum fuel

trajectories.



Figure 24. The set 84(1) for the plant of Equation (2-98).
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XZ [
o
O rl oy
I : =
-1 |
(2)
(b)
(c
(d)
-2 4 5(0)

(a) Minimm energy trajectory, Equations (2-98) and (2-99)
(b) Minimum fuel trajectory from Equation (2-101)
(c) Minimum fuel trajectory from Equation (2-102)
(d) Minimum fuel trajectory from Equation (2-103)

Figure 25. Minimum energy and minimum fuel trajectories for the
trolley example.



CHAPTER III1
THE MINIMUM ENERGY PROBLEM WITH INPUT SATURATION
I. INTRODUCTION

The minimum energy problem with input saturation is, in general,
very complex. In order to introduce some of the problems associated
with amplitude constrained inputs without confusing the issue with
complex notation, first order systems are discussed initially, The
discussion is largely intuitive, and leads to an algorithm for generating
the optimum constrained input sequence in an open loop manner.

In general, if the initial states lies sufficiently close to the
origin of '62 -space, the problem is solved. However, there is a
substantital region of initial states for which one or more members of
the corresponding linear minimum energy input sequence exceeds the
saturation limits. By working in a partitioned correction space,
rather than the solution space, several properties of the optimum
constrained input sequence can be derived. It is shown that the
minimum energy problem with amplitude constrained control is equivalent
to finding which members of the input sequence are to be set equal to
the saturation limit. Theorems 2 and 3 are helpful in finding such
members.

While for first order systems the problem is solved, second
order systems are solved in general only if the plant has integration

67
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or if it has complex poles. General results have not been obtained for

other plants.
II. FIRST ORDER SYSTEMS

In Chapter II, the linear minimum fuel problem was approached
by first considering the properties of the optimum input sequence for
first order plants. With first order systems, the invariant vectors
lie on the real line, and it is for this reason that intuition may be
employed to advantage. First order plants, while of interest in them-
selves, can again be used to throw some light on the general problem
of optimum regulation with saturationmn.

. Suppose, for the moment, that the saturation constraint is
relaxed. For a first order system, with a pole at s = - )\, the

invariant vectors are scalars:

h = eJX

_.+1 - 9 j = 0, 1, ce ey (3‘1)

where ¥ = AT. Using Equation (3-1),
-1 N-1
24
[I+Hﬂt] =1/Z 23¥ (3-2)
j=0 .
where, with n = 1, the n x N - n matrix H is defined in Equation (2-17).

The optimum input sequence, in the absence of the saturation constraint,

is then given by Equations (2-27) and (2-25):

N-1
WG+ 1) =el¥ ¢ /Z K8 50,1, ..., N-1, (3-3)
k=0




69
where ¢, again a scalar quantity, is the initial state in 1L -space,
corresponding to the state x(0) in x-space, and is given by Equation
(2-14). Consider the properties of this input sequence: from Equation

3-3),
k| < @] < ... <[:°m| 5 ¥>0 (3-4)

] > @  .ospCm| ;5 <o . (3-5)
It is interesting to note that, for c¢c # 0, none of the members of the
minimum energy input sequence can equal zero, while in the minimum fuel
problem all but one of the input members were equal to zero (page 39).
The linear minimum energy and fuel problems are alike in that, for
¥ > 0, the last member, uo(N), is the largest, and for ¥ < 0 the first
member, uo(l), is the largest. For a given N, Figure 26 shows how
u(j) increases linearly with c for the three typical cases, ¥ > 0,
¥ =0 and ¥ < 0. There is no loss of generality in confining the

discussion to stable systems; i.e., ¥ > 0. From Equation (3-3), if

N-1
0¢ g™ B 2¥ (3-6)
3=0

then 0 £ uo(N) £ 1. Therefore, for a given N, if ¢ satisfies Equation
(3-6), the optimum input sequence satisfies the saturation constraint.
It is convenient to define the set MN: for first order systems MN is
the set of all states + c, where ¢ satisfies Equation (3-6). Thus, if
¢ does not lie in MN’ the optimum input sequence given by Equation (3-3)

has one or more members which exceed the saturation limits. In this
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(o]
u’() § u’(3)
u®(2)
1 e cr— —— — e . — ——
u’(1)
: :
a. ¥>0
u’(2) = u°(3)
b. ¥ =0
u°<j>ﬁ u®(1)
u®(2)
1 — — —_—— =
u®(3)
0 <
c. ¥< O
Figure 26. The inputs uo(j) as a function of the initial state

for three representative first order systems.
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r.‘ )
case, the set lN provides the answer to the question: is there an
optimum input sequence which does satisfy the saturation constraint?
Such a sequence does indeed exist, if and only if the initial state
lies in the set [;. The statement that ¢ is in r;{ is a compact way
of saying that c can be represented by

N

c= Y DD, |w@| €1, 5=1,2 w, N, GD
=1

so that there is a solution, u(l), ..., u(N¥), to the deadbeat regulator

problem. For first order systems, the set r; is the set of all initial

states + c, where

N-1
0ce <y ¥ . (3-8)
j=0

For eX = 2, Figure 27 shows M3 and r;. Figure 27 also shows uo(l),
u°(2) and u°(3) as a function of c. The following analogy is helpful
in appreciating why c must satisfy Equation (3-8) in order for there to
be a solution to the deadbeat regulator problem.

The vector u(j) Ej can be imagined to be a telescoping rod, which
may be extended from zero length (u(j) = 0) up to a maximum length, the
length of Ej (u(j) = +1) . The deadbeat regulator problem, the problem
of representing c in the form of Equation (3-7), can be considered as
follows: for a given N, N rods are available, each of which, for

X # 0, has a different maximum length. The end of one rod being fixed

at the origin of C -space, the rods are to be placed end to end so
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that their resultant combination reaches the given state c. 1If, having
used all the available rods at their maximum extensions, it is still
not possible to reach c, then there is no solution to the problem. In
order to bring‘g to the origin, either N must be increased (more rods
must be made available) or the saturation constraint must be made less
stringent (the maximum allowable length of the rods must be increased).
The set r; is simply the largest set of states that can be reached by
combining together the N rods; for example, Figure 82 in Appendix A,
page 244, illustrates how r; is formed in this way for a second order

system.

Assuming ¢ is not in MN, but that N is large enough so that c

is in N’ there remains the problem of finding what amplitude constrained

input sequence minimizes the energy, E. If ¢ is not in MN, it is of
interest to know how many of the members of the input sequence exceed

the saturation limit. From Equation (3-3), with ¥ > 0, if

N-1 N-1
3% Z ezw< |-°-| < o~ (3-1)¥ Z o2K¥ , (3-9)
k=0 k=0

then uo(l), ceey uo(j) do not exceed the saturation limits and
uo(j+1), cees uO(N) do exceed the saturation limits,

Let the j-th member of the minimum energy amplitude constrained
input sequence be ue(j). It is postulated now, and verified later,

page 121, that, having calculated uo(j) from Equation (3-3),

if Iuo(j)l > 1 then ue(j) = sgn. uo(j) s (3-10)

where
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. J1 if u’(j) > 0
sgn. u (j) = . (3~11)

1-1 if u(j) < 0

In words, Equaticn (3-10) states, "If the j~th member of the unconstrained

optimum sequence exceeds the saturation constraint, the corresponding

member of the optimum ccnstrained input sequence is set equal to the

[11)

saturation limit." The telescoping rod analogy can be used to show that
the postulate is intuitively reasonable. If ¢ is not in MN’ Equation

> 1. This is to be expected since

(3-4) shows that at least luo(N)
EN is the longest invariant vector; under the minimum energy criterion
(as under the minimum fuel criterion) EN would, therefore, be utilized
the most in reaching c. Furthermore, when the inputs are constrained

in amplitude,

u(jﬂ & 1, it seems reasonable to expect that u®(N)
should be reduced as little as possible from uo(N); i.e., ue(N) =1,
The solution space {31) gives an alternate method c¢f showing
that the postulate is correct, at least for N = 2. Figure 28 shows the
twc-dimeasional sclution space. Input sequences that satisfy the
saturation constraint are represented by points on or within the square
centered on the origin. Figure 28 also shows two circles centered on
the origin. Pcints on the circles represent input sequences with equal
energy cost: the larger the circle, the larger the cost. Input
sequences that take an initial state c intc the origin of C; -space
must satisfy the deadbeat constraint, Equation (A-59), which, for N = 2

and n = 1 gives



.

//

in a two-dimensional solution space.
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¥ u(2) §
¢, = u(l) + e u(2)
c, =u@) + e? uN Eg
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1
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circles

Figure 28, The minimum energy problem for a first order system
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¢ =u(l) hy + u(2) b, (3-12)
= u(l) + u(2) eX . (3-13)

Equation (3-13) is a line in the solution space and points on the line
correspond to control sequences, u(l) and u(2), that can take c into
the origin of CZ -space. Two such lines are shown in Figure 28, for
the initial states ¢y and Cys c2'> c1’> 0. The minimum energy points
3; and Eg’ corresponding to ¢ and c,y respectively, are the pcints, on
the appropriate lines, whose distances from the origin is the least,
Since E; lies in the square, the amplitude constraints are satisfied;
this corresponds to ¢ in M,. The solution EZ lies outside the square,
with u°(2) > 1., The solution must obviously be moved from'gg if the
saturation constraints are to be satisfied, and must lie on the inter-
section of the line and the square. The solution with least cost
(consider the circles) clearly lies at Eé with ue(Z} = 1. While this

does not prove the postulate for N > 2, it does indicate that it is at

least reasonable,

An Open Loop Control Procedure

Assuming, therefore, that the postulate is correct, how can it
be used to find the optimum amplitude constrained input sequence? The
basic philosophy of obtaining the input sequence from Equation (3-10)

is best illustrated by means of an example. Consider the plant

AT k4
=e

1 . _ /
Gp(s) =S¥ with e =2 (3-14)

and let ¢ = 14 and N = 4. It is desired to find the minimum energy
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amplitude constrained sequence that takes ¢ = 14 into the origin in &
sampling periods,

From Equation (3-1),

hy=1, hy=2, hy=4 h =8. (3-15)

Equation (3-3) gives

23 14

o,.

(3-16)
therefore,

u(4) = 1.32, u°@3) =0.66, u®(2) = 0.33, u°(1) = 0.16.
(3-17)
Since u°(4) > 1, the postulate requires ue(ﬁ) = 1, which in turn gives
c =14 =u(l) + 2u(?) + 4u(3) + 8 . (3-18)

The problem now starts again, but with ¢ = 6 and N = 3. Equation (3-3)

gives
o 2j 6
G =52, (3-19)
21
therefore,
o o] )
u (3) =114, u (2) =0.57, u (1) = 0,28 . (3-20)
Setting ue(3) =1 gives ¢ = 2 and N = 2, giving
u®(2) = 0.8, u°(1) =0.4 . (3-21)

Neither of these exceeds the saturation limit, so the optimum input
sequence is,

(1) = 0.4, u®(2) =0.8, v¥B3) =1, @) =1. (3-22)
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Figure 29 shows the steps which resulted in Equation (3-22). This
simple example has illustrated one general procedure, based on Equation
(3-10), that gives the optimum input sequence. This type of procedure

generates an open loop control; closed loop control is considered in

Chapter V.

ITI. HIGHER ORDER SYSTEMS

The concepts that have been discussed for first order systems
in many cases carry over directly to higher order systems. However,
even for second order systems, the concepts are less straightforward,
and only in certain cases is it possible to find a reasonably fast
method of generating the optimum input sequence. For example, Equation

(3-10) does not hold for all second order systems.

The Set Mﬁ

The optimum input sequence, without amplitude constraints, is
given by Equations (2-27) and (2-28). These equations are repeated

below for the general n-th order system:
u®(1)

(3-23)

»

lO
I
i

=
+

.
0

A J

| u%(n)
u®(n+1)
b° = ) =uta® (3-24)

| u® @)




c. Step three
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Figure 29. The generation of the constrained minimum energy

Ainput sequence for a first order system with N = 4,
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where the n x N ~ n matrix H, given by Equation (2-17) is

H= [gh+1, b ys ees En] . (3-25)

If the initial state ¢ is sufficiently close to the origin of tz -space
(compare Equation (3-6)), none of the input members given by Equations
(3-23) and (3-24) will exceed the saturation limit. It is of interest
to investigate the set, MN’ of all such initial states, since, if ¢ is
in Mﬁ, the minimum energy problem is solved without further ado by
Equations (3-23) and (3-24). A formal definition of Mﬁ, more general

than that given for first order systems, is:

M= |e

c=a+Hb, b=Ha [uN| <1 5=1,2, .., N .

(3-26)

The set rﬂ, Equation (A-60), can be written as

= e

n= lele=a+ms Ju| <51, 2, o, 8] LG

If, for a given settling time of N sampling periods, c is r;, solutions
to the deadbeat regulator problem exist. The problem of finding which
one minimizes the energy subject to the amplitude constraint is solved
if ¢ is in MN’ since the linear design equations, Equations (3-23) and
(3-24), give an input sequence which does not violate the saturation
constraint. If ¢ is not in MN’ the input sequence, 2?, will contain

at least one member that exceeds the saturation limits. The general
properties of Mﬁ are developed next. For the sake of clarity, the
discussion is limited to second order systems, but the extension to

higher order systems follows without difficulty. The set MN is most
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easily imagined as being formed from the lines w®(j) =+1, j = 1, 2, ...,

N. As an example, Figure 30 shows the sets r; and Mﬁ for the plant
1
P s

Some properties of MN follow directly from Equation (3-26): Mﬁ is
convex and symmetric with respect to the origin and is a subset of r;.
Figure 31, showing MN and r; for N =3 and N = 4 demonstrates a
further property of Mﬁ: MN+1 does not necessarily include all of the
states in MN. It can, however, be shown for stable and completely
controllable plants (compare the similar property of r; in Appendix
A, page 243), that as N— O the set MN does include all states in

(3 -space. Since N is a given quantity, however, the saturation
problem may not be circumvented by merely increasing N until ¢ lies in
Mﬁ.

The set MN may be constructed either by calculating the equations
of the lines uo(j) =1, j=1, 2, ..., N, from Equations (3-23) and
(3-24) or by the graphical method described in Chapter II. The
graphical technique is most conveniently developed in terms of the

auxiliary set LN'

o
The set LN. For second order systems, /&--space, discussed
in Chapter II, has coordinates uo(l) and u°(2), the members of g?.
Any point in /&S , corresponding to a particular 3?, also specifies
B? from Equation (3-24). The line uo(j) = 41 is the line

E'JS a® =41 . (3-29)
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Figure 30. The sets M, and r; for the plant 1/52.
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Figure 31,

The sets

M, for the plant 1/s2.
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It will be recalled from Chapter II, that the line h; _a_° = 1 is normal

to the vector gﬁ, and intersects h_  at a distance 1/ {j from the origin,

]
where ‘(jl‘the length of‘gj, is given by

_[.t 172 )
{j -[ﬁj g_j], . (3-30)

Given the invariant vector<hj, it is, therefore, a straightforward
matter to construct the lines of Equation (3-29). Figure 32 shows, for
example, the lines uo(l) ='tl, u°(2) = +1 and u°(3) = +1 for the plant
1/32. The set L

is shown by the cross-hatched area. In general, the
3 1 4

set L. is the set of alllgé such that

-1¢ gg a®g1, §=1,2, ..., N . (3-31)

o
Obtaining Mﬁ from LN' While LN is defined in )K.-space and

Hﬁ is in (j ~-space, they are closely related. Given 3? in LN (and
therefore also 2?) all the members of the input sequence

a’ &
(o}

W = (3-32)

both satisfy the saturation constraint and minimize the energy cost,
and if c is in Mﬁ, the input sequence has these same properties., The

input sequence and the initial state are related by

c=a’+m° . (3-33)
o
Therefore, given any point‘g? in ./&., the input vector 2? is fixed,
and can be estimated from the lines h; 3? =0, +1; j =3, 4, eees N.

The corresponding initial state ¢ is given by Equation (3-33), or
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u’(2)4
]
b,y
u®(3) = 1
h
uo(z) -1 1 ‘ -2
u’3) = -1
-1 \
A -
\\\ h, u’ (1)
L
@) = -1
-1
w’() = -1 @) =1

Figure 32, The lines hg a

plant 1/s<.

o

o,. .
=u(J)=i1)J

1, 2, 3, for the
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eguivalently,
N
o,. .
c= Z u (3 h(d . (3-34)
J=1

The set LN can be drawn directly in Ci -space: while generating Mﬁ,

the coordinates of Ci ~space can serve the dual purpose of representing
o]

points in both /A\ and C; . This device has been discussed already

in Chapter II. Figure 33 shows how L3 is used to generate M3. The

corners of LN are labelled A, B, C and D; corresponding points on MN

are labelled A', B', C' and D'.

The Problem of Saturation

Having found the set Mﬁ and its size relative to [ﬁ ,» the likeli-
hood that ¢ lies in MN becomes evident, see for example Figures 30, page
82, and 31, page 83. However, just as for first order systems, the

question arises: for ¢ in what is the optimum input sequence if

N’
¢ does not lie in MN? Unfortunately, there is no simple general
postulate, such as Equation (3-10), which can be used to obtain the
optimum constrained input sequence. Stubberud and Swiger (36) gave a

method which purported to indicate which members of the input sequence

satisfied

u®(j) = sgn. () . (3-35)

" However, the method is based upon a theorem (36, page 405) which, as

will be shown later in this chapter, breaks down in certain cases. The

analogy, which proved useful for first order systems, and which might
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Figure 33. The generation of the set MN from the set LN for N = 3.
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lead one to expect that Equation (3-35) is true for every j for which
luo(j)|'> 1, 3=1, 2, ..., N, does not reveal the subtleties of the
saturation problem, even for‘second order systems. The results obtained
by Stubberud and Swiger were developed in the solution space. The
drawback is that if N > 3, visualization of the problem becomes impossible;
even with N = 3 it is not easy. By equivalently partitioning the
solution space into two spaces, one n-dimensional, the other (N-n)-

dimensional, the saturation problem can be examined more readily.

The Correction Space

Suppose, having calculated the unconstrained optimum input
sequence, go, from Equations (3-23) and (3-24), it is found that one or
more of the members of‘gé violate the saturation constraint. Consider
the effect of adding to 20 an N x 1 correction vector 8.. There

results a new input sequence, u, given by

u=u’+ 5 . (3-36)
For u to be considered as a candidate for the optimum constrained input
sequence, Eé, u must satisfy both Equation (1-10),

cu=x0 , (3-37)
and

lu(j)l £1, j=1,2, ..., N . (3-38)

Substituting Equation (3-38) into (3-37) gives

cu+ cg = x(0) , (3-39)

and since u = E? already satisfies Equation (3-37), Equation (3-39)
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becomes
Cg =0 . (3-40)
Equation (3-36) gives
u(d) = o°(j) + S(j) , (3-41)

where g (j) is the j-th member of g . In order that u(j) satisfy

Equation (3-38), S(j) must satisfy,

-1 -4 € g(j)g 1-u2(), §=1,2, caey N . (3-42)
Equations (3-40) and (3-42) are constraints that must be satisfied by
g so that u = Eo + _g_ takes E(O) to the origin and satisfies the
saturation constraint, From these allowable corrections, g s wWill be
selected the oné that gives E = Et u a minimum value. |

The energy taken by the control sequence u is

E=u" u=u""u+ 23°t§ + _8_ t_§_ ) (3-43)

With the use of Equation (2-37),

E=©£+ 2[ct(cct).1 x(0)] t§ + § t§ . (3-44)
Therefore,

E-E°= .2§(0)':(cct).1 c§ + gt§ , (3-45)
and since Cg =0,

E-E°=/,E= StS . (3-46)

Equation (3-46) says that if a correction é is added to the uncon-
o . .
strained minimum energy sequence, u , the resulting input sequence, u,

t
requires an extra amount of energy, AE = g S . If the members,
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g(j), j=1, 2, «ee, N, of the correction vector are made the co-
ordinates of an N-dimensional correction space, the g that satisfy
Equation (3-41) lie in an N-dimensional hypercube centered on g = -g_o.
The constraint of Equation (3-40) is an (N-n)-dimensional hyperplane
through the origin of the correction space. Figure 34 shows the correc-
tion space for a first order system with N = 2; compare this with the
solution space in Figure 28, page 75. Note that Figure 34 shows no
intersection between the square and the line, and there is, therefore,
no solution to this amplitude constrained regulator problem; ¢ does
not lie in f;_. At this point there seems little advantage in the
correction space; visualization of the problem for N > 2 is again
difficult or impossible. However, by partitioning the correction vector

5 the problem can be visualized for N = 4 or even 5.

The Partitioned Solution Space

Let the correction vector g be partitioned so that
S Q
Q = (3-47)

where @ is an n-vector, corresponding to a correction to 30, and B is
an (N-n)-vector, corresponding to a correction to _130: a(j) = g(j),
j=1, 2, «eay, n, and B(j-n) = g(j), j=ntl, ..., N are the components
of @ and B. Equation (3-40) becomes

Ra+Qp=0 , (3-48)
which, on multiplying by R-l, gives

a+HB=0 , (3-49)
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and the energy correction, AE, is therefore
mm=a a+pp-pfrrnulp . (3-50)
The minimum energy regulator with amplitude constrained input
sequence has been transformed to the problem: minimize
t t 4
m=§[rniﬂ§ (3-51)
subject to
o,. . . .
-l-uvM<a@d<1-"@) , i=1, 2, ..., 0, (3-52)

-1- %) KB <1 - w®(atd), =1, 2, ..., N-m, (3-53)
and

HB=-a . (3-54)

Let CxL-space be the n-dimensional space with coordinates
(1), ee., a(n), and let ﬁs-space have coordinates B(1), ..., B(N-n).
The direct sum of CXL-space and ﬁ% ~-space is, of course, the correction
space. Denote by A_n the set of o that satisfy Equation (3-52), and by
BN_n the set of B that satisfy Equation (3-53). These sets are shown
in Figure 35 for a second order system (n = 2) with N = 4. The direct
sum of An and BN_n is just the N-dimensional hypercube of g_ that
satisfy Equation (3-42).

Now, assuming N 3> 4, by means of Equation (3-54), the set An

can be transformed into ﬁ% -space. Let this map of An be called A;.

For second order systems, Equation (3-54) gives

h h,. e .. B(1) -a(1)
31 a1 | [P ) . P,
hyy By, - . - B, . -a(2)
B(N-2)




o(2) ¢
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/'éo Az
-1 0 1 2 2(1)
-1 4
a. The set A2
B(2) 4
i
B
.0 2
-b /
-1 0 1 B(1)
-1+
b. The set B2
Figure 35. for n = 2 and N = 4,

The sets A and B
n N-
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Equation (3-55) gives two hyperplanes in ﬁS -space. If in general the

1 x N matrix Ej’ j=1, 2, ..., n, is defined as

By = [Porn 5o Poga 5o ooes By ] (3-56)

the equations of the two hyperplanes, Equation (3-55), may be written

as

(
[

2; B+ al) s (3-57)

(1}
<

P, B+ a(2) (3-58)

The row vectors Bj’ j=1, 2, ..., n, are simply the n rows of the
matrix H. The set Aé is, therefore, the set of points, B, that are
generated by Equations (3-58) and (3-59) for all ¢ in Az.
The intersection of Aﬁ and BN-n defines a set UN-n' Corrections,
B, lying in UN-n satisfy Equation (3-53); the corresponding o, given
by Equation (3-54), satisfy Equation (3-52). Therefore, any B lying in
UN-n is a possible choice to minimize the correction energy given by
Equation (3-51). Equation (3-51) describes AE as a positive definite
quadratic form. In a two dimensional ﬁS -space, for a constant AE,

Equation (3-51) in gneral describes an ellipse; in three dimensions

an ellipsoid, and so on.

. ] . .
Example. To illustrate how An and the ellipsoid depend on the
matrix H, consider the second order plant,

1
(s+ a+ jb)(s+ a - jb) 4

GP(S) = (3-59)

and allow a settling time of four sampling periods (n = 2, N = 4). The

invariant vectors,‘hj, j =3, 4, for this plant are obtained from
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Table I, Appendix A, page 252:
e2aT -2e3aTcos bT
23 = > E‘l- = . (3-60)
ZeaTcos bT ezaT(4 cossz - 1)
If a = 3.465, b = 14.83 and the sampling period is chosen as T = 0.1,
these invariant vectors become,
-2 -0.5
by = . b = : (3-61)
0.25 -1.9375
From Equation (3-25),
-2 -0.5
H= . (3-62)
0.25 -1.9375
Consider the generation of the set Aé. From Equation (3-56),
P = [-2, -0.5] » Py = [0.25, -1.9375] . (3-63)

For the moment assume 30 = 0. Eguations {3-57) and (3-58) are used to

construct the set Aé, shown in Figure 36 as the dashed parallelogram.

Note that if 30 # 0, the set Aé would not be centered on the origin;

the case 30 = 0 corresponds to the unrealistic case of ¢ = 0. Further-
o o & ' s

more, as long as both |u (1)] € 1 and |u (2) 1, the set A2 will

contain the origin of KS -space. Now consider the shape of the ellipse.

The positive definite matrix in Equation (3-51) is

5.0625 0.515625
[I + 1 H] = . (3-64)
0.515625  5.00390625

The eigenvalues,,@l and 92, of this matrix are
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1
Figure 36, The set A, in a two-dimensional ﬁ -space.
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91 = 4,5167, 92 = 5.5497 (3-65)
and the corresponding eigenvectors, 91 and @, respectively are
1 1
® = s W, = . (3-66)
~1.058 0.945

The eigenvectors correspond to the major and minor axes of the ellipse;
the major axis lies along the eigenvector le) formed from the smaller
eigenvalue (91), and the ratio of the length of the major axis to the
length of the minor axis is

1/2
= . (3-67)

As /E increases, the ellipse becomes larger. Figure 37 shows ellipses

corresponding to AE, and LE,, L&, > AEl.

The set UN-n' Having considered the special case of a second

order system in a two dimensional ﬁg-space to illustrate the generation

of Aé and the ellipse of Equation (3-51), it remains to consider the

set Since the set B is a convex set, and A& is a convex set,

Uﬁ-n' N-n
their intersection, the set UN-n’ is a convex set. The faces of the
set UN-n in general consist of the faces of the hypercube BN-n and/or

the 2n hyperplanes

By B+ a(i) =0, ai) =1 -u°(@), ald) = -1 - w (D, §=1, o0y
(3-67)

If the initial state ¢ is not in rﬂ, the sets A& and BN-n are disjoint;
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Figure 37. Ellipses of constant correction energy in z%-space.
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i.e., they contain no points in common, and UN-n is the null set. If
€ is in !—‘N, UN-n does contain at least one point. Any B in UN-n gives,
with Equations (3-47) and (3-54), a correction B » which gives, from
Equation (3-36), in turn a control sequence u, satisfying the saturation
constraint and taking ¢ to the origin of 6 -space. If the initial
state ¢ is in MN’ clearly no correction is necessary; in this case,
UN-n contains the origin of /8 ~-space. If the initial state is not in
MN’ not all of the members of Eo lie within the saturation limits, and
it becomes necessary to add a correction § to 30. In this case, U

N-n

does not contain the origin of ,8 -space.

The minimum energy problem reformulated in B -space. The

minimum energy problem with input saturation can now be considered in
the following manner. For a given settling time, N sampling periods,
and a given initial state ¢, ¢ in r the golution to the minimm

. . o . .
energy problem without input saturation is u , and is obtained from

Equations (3-23) and (3-24). If uo(j)l £1, j=1, 2, ..., N, the

problem is solved. In such a case, UN-n containing the origin of /3 -

space, no correction is necessary. If however, one or more of the

input members uo(j) exceeds the saturation limits, Iuo(j) > 1, the
set UN-n does not contain the origin, and a correcfion B is, therefore,
required. The energy required by the corrected sequence, u = 20 + _g s
is, from Equation (3-46), given by E = E® + AE. This energy is

minimized when AE is minimized. As AE increases, the (N-n)-dimensional

ellipsoidal surface of Equation (3-51) moves outward from the origin
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(compare Figure 37). The permissible correction, B, must lie in the

set UN-n' Therefore, if AE is smoothly increased from AE = 0 until the

surface first touches the set UN-n’ this first point of contact is the

minimum energy correction. Let this point be Qe. Then the solution

to the minimum energy problem with input saturation is

uw’ =+ 5"' (3-68)
where
e
o
e e e
g = H a =-HpB H (3-69)
e
B
and the minimum energy is
e o 'et e
E =E 4+ g g . (3-70)

Of course, the problem still requires a numerical solution. The
problem of finding the point ée is, in general, not 3 trivial matter.
Before pursuing this problem any further, it is necessary to identify
the various faces of U_ .
N-n
In ﬁ3 -space let the (N-n)-dimensional hyperplane

. o . :
B() =-u(n+ j)+1, i=1, 2, .ee, N-n (3-71)

be denoted Wﬁ+j, and let the (N-n)-dimensional hyperplane

B(i) = -+ 3§ -1, j=1,2, ..., N-n, (3-72)

be denoted W These hyperplanes form the hypercube B The

-(ntj)° N-n®

boundaries of the set Aﬁ are the 2n hyperplanes given by Equation (3-67).

Let the (N-n)-dimensional hyperplane,
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P.jﬁ_-u”(j)+1=0, i=1,2, eee, n, (3-73)
be denoted Wj’ and let W_j denote the hyperplane
o,. .
Bjé-u(J)-]‘:O’ J=1’2,¢-"n. (3-74)
These 2N hyperplanes, Wj, W-j’ i=1, 2, .es, N, define the set Uy e

Depending on the initial state ¢, not all the hyperplanes are necessarily

faces of U, _.
: N-n

General approaches to the problem of finding Qé. From Equations

(3-41) and (3-47), if B lies in Wj, u(j) = 1. Similarly, if B lies in
W_j, u(j) = ~1. The optimum correction, QF, lying on the boundary of
Uﬁ-n’ must lie in one or more of the hyperplanes Wj, W-j’ i=1, 2, ...,

N. Therefore, the minimum energy problem amounts to finding which

. . e . -
members of the optimum input sequence, u, equal the saturation limit.

As an example, Figure 38 shows the sets Bz, Aé and UZ for a typical

second order system. The set Aé is shown by the dashed parallelogram,

and U2 is the cross~hatched area. The boundaries of Aé and B2 are

labelled by their corresponding lines Wj’ W-j’ ji=1, 2, 3, 4, and the
optimum correction, QF, is shown at the intersection of WA and WZ.

The general problem of finding Qé obviously depends on the shape
and position of the set UN-n relative to the surfaces of Equation (3-51),
and some general observations can be made. If none of the members of
3?, uo(l), u°(2), cosy uo(n), exceed the saturation limit, A& contains

the origin of ﬁ5 -space, and EF must lie on the boundary of BN-n and not

e <
in its interior. Therefore, at least one of the members of 2?, u (n+j),
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Figure 38,
correction g®,

1
The sets B2 and A2 forming the set U2, with the optimum



-..-Qannni--..n--nnn.<1

103
j=1, 2, ..., N-n, must be equal to the saturation limit. Similarly,
if none of the members, uo(n +1), ..., uO(N), of E? exceeds the satura-
tion limit, BN-n contains the origin and Q? lies on at least one of the
Wj, W_j, j=1, 2, ..., n. Therefore, at least one ue(j), i=1, 2, «c.,
n, equals the saturation limit. If only one of the members of 3? exceeds
the saturation limit, the following theorem is applicable.
Theorem 2. If c is in r; but not in MN’ and if only one .of the members,

. . 0 R ..
let it be the j-th member, of u" exceeds the saturation limits, then

u®(§) = sgn. w°() . (3-75)
Proof. Since the origin of ﬁs-space is contained on or between the
pairs of hyﬁerplanes W, W o i=1, 2, <oy N, i # j, and is not
contained on or between the pair Wj, W_j, Eé must lie on Wj or W'j.
Consider Figure 39. 1If uo(j) >1, Be(j) =-u°(j) + 1, and therefore,
ffom Equation (3-68), u®(j) = 1. If u®(j§) < -1, B%(§) =-u°(j) - 1 and
ue(j) = -1. Therefore, ue(j) is given by Equation (3-75) and the theorem
is proved.

Theorem 2 was proved by Stubberud and Swiger (36, page 405) in
the solution space. As mentioned earlier, it is felt that the reasoning
behind the proof can be followed more easily in ﬁ;-space. Theorem 2
has immediate use. If, on following the step by step open loop control

. o
scheme demonstrated earlier, not more than one member of u exceeds the

saturation limits at each step, Theorem 2 guarantees that the resulting

e . .
u is optimum.

Now suppose luo(j)l > 1 for more than one integer j. Does

Equation (3-75) hold for more than one value of j? Figure 38, page 102,



104
®(3)
; 4 $ + -
-’ -1 0 1 B(3)
| v_ W
a. uo(j) >1
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b. u’(j) < -1

Figure 39, The two cases uo(j) >1, uo(j) < -1 of Theorem 2.
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where u (3) and uo(ét-) both exceed the saturation limit, shows immediately
that, in general, Equation (3-75) is not true for more than one value
of j, since iue(B)! < 1. Postulate 1, based on the work of Stubberud
and Swiger (36), suggests a method for finding which members of g_e are
to be set equal to the saturation limit.

Let the points of tangency of the hyperellipsoid of Equation
(3-51) to the hyperplane Wj and W-j’ ji=1, 2, ..., N, be called ﬁ. and

@-j respectively. Corresponding to these (N-n) x 1 vectors ﬁ and B _

are the N x 1 vectors 5’; and g , obtained via Equations (3-49) and

(3-47) as
-H B.
g-!- 3 .
Qj = s i=1, 2, eay N, (3-76)
=
and
[ae
g:]: = s j = 1, 2, soay N . (3-77)
B ;s

Let the set of integers j for which |u°(j)| > 1 be called J. For
notational simplicity assume, without loss of generality, that u°(1) > 1.

Then:

Postulate 1. If, for all integers j in J,

u(l) = «°Q) + g’;(l) >1 when u®(j) > 1 (3-78)

u(l) = «°Q1) + 83(1) > 1 when u°() < -1 (3-79)

then it follows that ue(l) =
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The modification for the case uo(l) < -1 is simply to replace
21 by £ -1 in Equations (3-78) and (3-79), and the result that follows
is that ue(l) = -1. Postulate 1 can be stated verbally: Suppose more
than one member of E? exceeds the saturation limit and, typically,

u°(1)3> 1. 1If the additional constraint

u(i) = sgn. u®(i), i inJ, (3-80)
is adjoined to Equation (2-16) in the linear energy problem, Problem
(2-18), and a new uo(l) is recalculated for each separate i in J, then
ue(l) = +1 if each uo(l) is still greater than unity. Figure 40 gives
an example, for a typical second order system with N = 4, where Postulate
1 is valid: the first member, u°(1) and the last member, u°(4), both
exceed unity, and J consists of the integers 1 and 4. Then ue(l) =1
since EA lies beyond Wl giving u(l) = uo(l) + SZ(I) > 1. Similarly
u€(4) = 1, since El lies beyond WQ, giving u(4) = u°(4) + 8 :(4)'> 1.
For a different initial state c, Figure 41 gives another example where
Postulate 1 is valid. Here u°(3) < -1 and uo(é)'> 1. The set J consists
of the integers 3 and 4. Then ue(4) = 1 since B -3 lies beyond W4,
whereas ue(3)‘> -1 since E4 lies inside W_3. From these examples it
might appear that Equations (3-78) and (3-79), or their equivalents
when u°(1)<< -1, be postulated not only as sufficient conditions for
ue(l) = 1, but also as necessary conditions., That these are not
necessary conditions may be seen by considering Figure 42, which shows
u°(3)<:—1 and u°(4) > 1. For the purposes of Postulate 1 u(4) =
u®(4) + 8“;(4) > 1, but u(3) = u°(3) + 82(3)>-1, however, it is

evident from Figure 42 that both ue(4) = 1 and ue(3) = -1,
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Figure 40, First example where Postulate 1 is valid.



B(2) §

18]

108

Figure 41, Second example where Postulate 1 is valid.
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Figure 42, An example showing that the conditions of Postulate 1

are not necessary conditions.
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Having given two examples where Postulate 1 is correct, it is
equally possible to find examples where it is incorrect. Consider the
plant given by Equation (3-59). Let c be given as
"3 03
£= s (3-81)
-2.7125

corresponding to an initial state on the boundary of rq, The linear

~

minimum energy input sequence is

20 = col. [-0.583, -0.5062, 1.04, 1.272 ] . (3-82)
Figure 43 shows the coryesponding sets Ai and BZ. The set U2 is a
single point, given by

"0. 14
= . (3-83)
-0.272

Since U2 is a single point, Equation (3-83) also gives gé, and therefore,

w® = col. {-1, -1, 0.5, ;} . (3-84)
Postulate 1 would give the components ue(é) = 1 and ue(3) =1; i.e.,

a Eé at the intersection of W3 and W&' This would leave the task of

taking the new initial state
=3.3 0.5 2 -0.8

c= + +
-2.7125 1.9375 -0.25 -1¢025

» (3-85)

into the origin to the remaining invariant vectors h. and 22. There-

1
fore, in this case Postulate 1 breaks down.
The set MN includes a substantial region of states in r;.

Similarly, it would be valuable to know the size of the region of initial

states for which Postulate 1 is valid. This extended region is
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Figure 43. .The set U2 shows that Postulate 1 is not always valid.
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illustrated by means of an example, which leads directly to Theorem 3.
The example uses the second order plant of Equation (3-59),

1
(s + 3.465 + j 14.83) (s + 3.465 - j 14.83) (3-86)

Gp(s) =

and the sampling period is again T = 1. Using the invariant vectors of
Equation (3-61), the sets r; and M.4 are generated and are shown in
Figure 44. The cross-hatched regions are regions where Theorem 2 applies,
and therefore, where Postulate 1 is valid. The regions of initial

states for which two members of‘go exceed the saturation limit are
labelled A, B, A” and B'. Because of the symmetry, it is only necessary
to consider states in A and B. The initial state of Equation (3-81) is

in region A, so that, for at least one state ¢, the postulate is invalid.
The question to be discussed next is: how many other initial states in

A and B have optimum input sequences whose members cannot be obtained

------

o
rt

tty I Shaniiig i @ mlId COnVELniIEen

way of stating Postulate 1, is necessary before this question can be
answered.

Let the point of tangency of the hyperellipsoid of Equation (3-51)
with the hyperplane g(j) = constant be called gj. If the hyperplane
is WJ., gj corresponds to éj of Equation (3-76), and if W_j, gj
correqunds to &; of Equation (3-77). It is shown in Appendix B,

Equation (B-46), that the i-th member of gj is given by

S.: - T,
Sju) = —3i—= S, 1 i=1, 2w i, (3-87)
i3

where gij is the Kronmecker delta, 1 - Tjj > 0 from Equation (B-53)
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u’@3) = -1

Figure 44, The regions A, B, A and B where two members of uo,
for the plant of Equation (3-86), exceed the saturation limit.
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and

O,.
Tij =u (l’ b_j) ’ (3-88)

. o,. . :
where the notation u (i, Ej) refers to the i-th member, i =1, 2, ...,
N, of the linear minimum energy input sequence when the initial state

¢ is the invariant vector Ej’ i=1, 2, ..., N. If the point of

tangency to the hyperplane Wj is desired then

S(j) =-u’G +1, (3-89)

and if the point of tangency to the line W_j is desired, then

8 = - - 1. (3-90)
For the purposes of Postulate 1, if u®(j) > 1 the point of tangency is
to be with the hyperplane Wj, and if uo(j) < =1 the hyperellipsoid is
to be tangential to the line W_j (see Equations (3-78) and (3-79)).

AEATAY Q(-\ e
- ;

3 PN

H Lo omnars H ™ EaRriadc 3N -
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Therefore, in either casze
Equation (3-87) is to be given by
. o,. o,.
8(3) =sgn. u (j) - u (i . ) (3-91)
Postulate 1, in its most general form, can therefore be restated as:

Postulate la. If i is in J, ue(i) = sgn. uo(i), if, for all j in J,

>1 if @) >1
u®(i) + gj(i) , (3-92)
<-1 if W) < -1
where g(j) in Equation (3-87) is given by Equation (3-91).
Having restated Postulate 1 in the more convenient form of

Postulate la, it is possible to continue the examination of regions A
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and B in Figure 44. When the initial state is in region A, u°(3) >1

and u®(4) > 1. Postulate la states that ue(3) =1 if
° S
u (3) - (T34/1 -T,) 0W=21 , (3-93)

where 8(4) =1 - u°(4) is a negative quantity and T34 = u°(3, 114) is,
as can be seen from Figure 44, a positive quantity. Further, from

Equation (B-53), 1 - Tjj is always positive, Therefore,

@) - (T3,/1 - T,) 8(40 >1 ., (3-94)

and ue(3) 1. Similarly, 8(3) =1 - u°(3) is also negative, and

since '1‘43 = T34, see Equation (B-55), ue(l+) = 1. Thus, Postulate la

gives, for all initial states in A,

(3 = %) =1 . (3-95)

Now consider initial states in region B. In this region u°(3) > 1 and

o

w {8y € -1, 4 smtraightforuard caloulation, using Uguation (2-28), gives,
~Ty,/1 - T,, = -0.10185 (3-96)
~T,4/1 = T35 = -0.10304 . (3-97)
Postulate la says that ue(3) =1 if
W@3) - 0.10185[-1 - u°(4ﬂ >1 , (3-98)
and u®(4) = -1 if
u®(4) - 0.10304 [1 - u°(3)] < -1 . (3-99)

Equations (3-98) and (3-99) give the three possible occurrences shown
in Figure 45: when the initial state is in region B, the postulate

gives either ue(3) <1, ue(h) = -1, or ue(3) =1, ue(h) = =1, or finally
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u’(4) ¢

2 w0 (3)

w3 =1, ¥ > -1

I — e -

a®3) = 1. %04 = 1

|
u®(4) = -1, u®3)< 1/

Figure 45. The possible values of ue(3) and ue(4) for initial
states in region B of Figure 44, page 113, as given by Postulate la.
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ue(3) =1, ue(A):> -1. The corresponding initial states ¢ for which
these results apply are shown in Figure 46,

Regions A and B contain sub-regions of initial states for which

Postulate la is invalid. In region A, for example, it has been shown,

in Equation (3-95), that the postulate requires ue(3) = 1. Setting
ue(3) = 1 leaves the invariant vectors El’ 22 and 24 to represent the
new initial state,

e =¢c-h; . (3-100)

]
Therefore, if c' does not lie in the set r; , formed from.gl, 22 and

.23 as, see Figure 47,

’

[ = [e'] e = won, + wb, + wtorn,; |un|<1, 5 = 1,2,4
(3~-101)
then Postulate la is invalid, since it is impossible to take c' into
Lhe origin with any input sequence satisiying the saturation constraint.
For an initial state c in region B, setting ue(A) = -1 gives

c'=c+ 24 . (3-102)

If c¢' does not lie in the set r;,

[3= (o] et = wn, + v, + wny; | <1, 5= 1,2,3]

(3-103)

see Figure 47, the postulate is also invalid, for the same reason.
Figure 47 also shows, by the cross-hatched areas, the subregions
of A, B, A" and B~ for which Postulate la is invalid. 1In this example,

these regions are very small when compared with the size of f;.
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Figure 46. The possible values of ue(3) and ue(4) for initial
states in region B, as given by Postulate la.
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-
3
Figure 47. The subregions, shown cross-hatched, of regions A, B,

A and B for which Postulate la is invalid for the plant of Equation
(3-86) with N = 4.
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In general, the following theorem, proved in Appendix B, can be
of significant help in obtaining the sequence 2?.
Theorem 3. Given an initial state € in l—; but not in MN‘ For a given
i in the set J, calculate, from Equation (3-87), g;j(i) for all j in

J. Then

u®(i) = sgn. uO(i) (3-104)
if, for all integers j in J,
>1 if ®@G)>1
) + gj(i) , (3-105)
< -1 if )< -1
where Sj(i) is obtained from Equation (3-87) with g(j) given by

Equation (3~91), and
e =c - [sen. ] b (3-106)

— !

is in the set iN-l’ where

'
I_;I"l = 2' E" = Z u(j)hj; |u(j)l “"'<--’ 19 j = 1’ 2, esey N
j=1
J#i
(3-107)

This theorem is useful if it can be shown that c¢' is in r;ll'
The only general way to find out if ¢' is in r;:I is to actually go
through the step by step open loop control procedure discussed earlier.
If a sequence results which takes the initial state ¢ to the origin, it

is an optimum sequence. If, however, N having been reduced to n or less,
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it is found that c cannot be represented with the remaining invariant
vectors then one or more members of the input sequence must have been
erroneously set equal to the saturation limit., There are several cases,

however, where Theorem 3 can be used to generate the optimum input

sequence.

First Order Systems

It can now be demonstrated that Equation (3-10) may be used to
generate an optimum sequence for first order systems. Without loss of
generality, consider stable first order systems with initial states
€ >0. It was shown, Equation (3-4), that if ¢ is not in Mﬁ, at least

the last member of‘gé exceeds the saturation limit, Iuo(N)l > 1l. Then

In

'=¢ - EN is certainly in r;-l if ¢ is in f;. Furthermore, all the

o Lo . .
members of the input sequence u  are positive and u°(1, Ej) is always

Equation (3-10) results.

Second Order Systems

The only results of significant generality which have been
obtained for second order systems are for plants with real poles, at
least one of which corresponds to an integration, and for plants with

complex poles which have been " tuned' (47, page 95).

Second order plants with integration. Consider the stable second

order plant,
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i
Gp(s) = -S-(T‘T_)\—)- R A >0 R (3-108)
with invariant vectors, see Table I, Appendix A, page 252, given by
-5(J)
EZ.'.j = ’ i=1, 2,3, ..., (3-109)
s(i +1
where
AT, jAT
. e’ (e - 1)
S(i) = NT . (3-110)
e -1
For this plant, the set Mﬁ is bounded by the lines
o o
u(l) =41, u @) = +1, (3-111)
which can best be seen by considering the lines 2; 3? =1, =1, 2,
3, «.., shown in Figure 48. The lines b; 3? = #1 and E; g? = +1 form

(o]
the boundary of the set LN in /Ag -space, and therefore, the lines of

Equation (3-111) are the boundary lineg of Mﬁ in ' -space.

Assuming that ¢ is in r; but not in Mﬁ, one or more of the
members of E? will exceed the saturation limit, It will be shown that,

for a second order system with integration,

it [0 > 1, w0 = sen. () ; G-112)
i.e., that Equation (3-10) is applicable to such systems. It must,
therefore, be shown that any initial state € in rﬂ, but not in Mﬁ,
satisfies Equations (3-105) and (3-107). Consider the lines uo(j) =1,

j=1, 2, ..., N. All these lines pass through the point on the boundary

of r; given by
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/////////j::::::::::////O = u®(1)
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Figure 48. The lines Ej 20 = uo(j) = 1 for the plant 1/s(s + A).
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N
c = Z b, (3-113)
§=1

. o.. s
and by symmetry the lines u (j) = -1, j=1, 2, ..., N, pass through the

opposite corner of r; given by

N
c=- Z by - (3-114)
i=1

This can readily be seen by considering the set LN: for example, in
Figure 47, page 119, the lines E; 39 = 1 all pass through the point
ag =1, ag = 1. The lines of Equation (3-111) partition f; into six
regions of interest, A, B, C, A", B~ and C'. By symmetry, only the
regions A, B and C need be considered. These regions are given by

initial states lying in r; and having linear optimum input sequences,

go, that satisfy respectively,

D1, Om -1, (3-115)
CM®> 1, Q) >-1, (3-116)
W >1, @ -l (3-117)

Figure 49 shows these regions for the plant

1
G, (s) = = (3-118)

with N = 4,

It is a straightforward, but tedious, matter to show that in

general B contains the lines uo(j) =1, j=N, N-1, ..., k, when
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Figure 49. The regions A, B and C and their symmetrical counter-
parts for the plant 1/s2.
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N-2 N-2
s |1+ Z [ S(i) + 1] > Z s () [S(i) + 1] ,  (3-119)
i=1 i=1
and that A contains the lines uo(j) =1, j=1, 2, ..., m, when
N-2 N-2
Z S(i) [s(i) + 1] -sm/| 1+ Z [S(i) + 1]
i=1 i=1 S(N-2) + 1
N-2 N-2 2 S(N-2)
1+ ) stors@ |1- ) sm
i=1 i=1
(3-120)

In Equations (3-119) and (3-120), the equality holds when either

uo(k) =1 or uo(m) = 1 lie on the boundary of r;. Figures 50 and 51
show how these equations have been used to calculate, for different
values of N, which members of 30 saturate when ¢ is in A or B. Figure

50 corresponds to the plant

1
Gp(s) = ;E s (3-121)

and Figure 51 to the plant

GP(S) = ;?;_‘1_—7\)' s e>\T =2 ., (3-122)

It can be shown that if uo(j) lies in A, j=1, 2, ..., m, uo(i, Eﬁ) >0
for i,j in 1, 2, ee., m. Similarly if u’(j) =1, j = N, N-1, ..., k,
lies in B, u®(i, h,)>0 for 1,j in N, N-1, ..., k. Further, S(j) as
given by Equation (3-91) is always negative for uo(j) =1 in A or B.

Therefore, if ¢ lies in A or B,

w(i) + gj(i) >1 (3-123)
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region A
region B

11

10

(%]

1 2 3 4 5 6 7 8 9 10 11 «°(3)

interior to the region

on the boundary of r;

Figure 50. The lines uo(j) = 1 falling in regions A and B as a
function of N, for the plant of Equation (3-121).
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region A region B

11

10

+ oy
+

u’(§)

interior to the region

Figure 51, The lines uo(j) = 1 falling in regions A and B, as a

function of N, for the plant of Equation (3-122).
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for any members of g? that exceed the saturation limit. It can also be
shown that Equation (3-107) is satisfied. The conditions of Theorem 3
are, therefore, satisfied for any initial state in A or B. 1In region
c, g(j) is positive if uo(j) -1, j=1, 2, «e., and is negative if
uo(j)j> 1, j=N, N-1, ... . It can be shown that uo(i,lgj) is negative

if ¢ is in region C and uo(i) < -1, uo(j) > 1. Therefore,

(i) + gj(i) < -1 if P < -1, (3-124)

) + gi(j) >1 if EH>1 . (3-125)

It can further be shown that Equation (3-107) is also satisfied if [
is in region C. It may, therefore, be concluded that, if c is in A,

BorC (A, B andC),

if, for any i, |u°(iﬂ >1, ue(i) = sgn. uo(i) . (3-126)
This result enables the optimum input sequence to be obtained by a step by
step procedure. For example, suppose, for the plant of Equation (3-121),
that ¢ is in B and N is given as N = 10. It is possible, see Figure 50,
that u°(10) >1, u°(9) > 1 and u0(8) > 1. Suppose all three do saturate.
Equation (3-125) guarantees that ue(10) = ue(9) = ue(8) = 1. Since

] . o P
c'=c-h h, - h, lies in the sequence u for the new initial

= " ="=10 =9 -8 7’

state c¢' with N = 7 may have u°(7) > 1 and u°(6) > 1. Suppose that this

happens and gives uo(7) = uo(6) = 1. The state c¢' - E6 - 27 lies in r;.

Figure 50 shows that the input u°(5) may saturate, but that u°(4)s£ 1.

Suppose ue(S) = 1. The state c¢' - h, - h, - h_ lies in rﬂ where u°(4)
= -6 -7 =5 4

may saturate. To terminate the procedure, suppose that u°(4)s; 1.

Then the problem is solved, since this latest state must lie in Mh' A
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method of closed loop control for plants with integration is considered

in Chapter V.

Second order plants with tuned complex poles. Consider the plant

1
(s+a+ jb)(s+a - jb) °? (3-127)

GP(S) =

with invariant vectors given by,

_e(j+l)aT s%n jbT
sin bT
Ll‘[t"’j = ’ j = 1, 2, see . (3-128)
ejaT sin(j + 1)bT
sin bT ]

Nelson (47, page 95) observed that if bT is adjusted so that
bT = 5, m=1,2, ..., (3-129)

the canonical vectors (and, therefore, the invariant vectors) become
mutually orthogonal. When the system satisfies Equation (3-129),

Nelson referred to the plant as being ''tuned”. Let

bT =

[T

, (3-130)

which may be accomplished by adjustment of either the sampling period
or b. Minor loop feedback might be used to modify b. With a tuned
plant, Equation (3-130) being satisfied, the invariant vectors become

2aT eAaT

(3-131)

Figure 52 shows the invariant vectors for a stable plant with a > 0. If
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22 #
B,
<t~ 0 i . -
b hy o
b Y

Figure 52. The invariant vectors for a stable underdamped second
order plant with tuning.
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a = 0 the tuned system has all its invariant vectors of unit length, a
particularly simple configuration.

By using a method analogous to that used for plants with integra-
tion, it can be shown that Equation (3-126) is also valid for tuned
plants. ‘Even though the orthogonality of the invariant vectors makes
this a simpler task than before, such considerations are not necessary.

Consider the initial state c represented by the N invariant vectors hl’
22, ccey EN:

N

c= = z u(j) Ej . (3-132)
<y i=1

This representation can be split into two parts,

N

¢, = Z u(j) hj s jodd , (3-133)
i=1
N

¢, = Z u(j) hj , j even . (3-134)
j=2

From Equations (3-128) and (3-130), compare Figure 52,

N

e, = u(l) + Z u(i) (1)@ DI2 G-DaT Ly (3-135)
=3
N s .

c, = u(2) + Z u(j) (1 UD/2 G-2aT (3-136)
p=r

Equations (3-135) and (3-136) are very similar to two separate first
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order systems, one with an initial state c, and the other with an

1
initial state Coe Although there are no real first order plants which
could fit the form of Equations (3-135) and (3-136), it is clear from
either the intuitive arguments or Theorem 3, that Equation (3-136) is
valid for these two artifical first order systems and, therefore, for
the entire tuned system. Therefore, the step by step procedure can be

. s e .
applied to generate the optimum sequence, u , in an open loop manner.

Closed loop control is considered for tuned systems in Chapter V.

General Second and Higher Order Systems

Second order plants with integration and underdamped plants with
tuning by no means exhaust the class of second order systems. Plants
with two real non-zero poles or plants with untuned complex poles are
quite common. To date, there is no general way of guaranteeing that
Equation (3-126), or even the more comphrehensive Postulate la, will
generate the optimal sequence gé. However, for such second order
systems, and the general n-th order system, if, on using Postulate la
repeatedly, the initial state can be brought into the origin, then the
input sequence so generated is optimum. Furthermore, since, in the
example at least, the regions where Postulate la is not valid are so
small, see Figure 47, page 119, it does seem reasonable to offer
Postulate la as having a high probability of success. 1If Postulate la
is not valid for the particular initial state, the only reasonable

recourse is to use general nonlinear programming methods.
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CHAPTER IV
THE MINIMUM FUEL PROBLEM WITH INPUT SATURATION
I. INTRODUCTION

The minimum fuel problem with input saturation is considered
initially for first order systems. The set FN’ analogous to the set

Mﬁ of the minimum energy problem, is introduced for these first order
systems: The telescoping rod analogy is then used to obtain the fuel
optimum input sequence. The problems of higher order systems can be
envisioned in ﬁ3 -space, but are more conveniently considered in the
partitioned solution space. Results of significant generality have been
obtained only for second order systems, where the fuel optimum sequence
is considered by closed loop methods. The closed loop solution is
obtained in terms of a set QN which is defined in 'fi -space. For
arbitrary N, this set has been obtained only for plants with integration
and underdamped plants with tuning. However, known properties of the
input sequence in the set F,_ and on the boundary of the set r; may be

N
of help in obtaining QN for other second order plants when N > 4.

II. FIRST ORDER SYSTEMS

It was shown in Chapter II that for the first order plant given

by

Gp(S) =3 L

sEX -1

134
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the unconstrained minimum fuel sequence is given by Equations (2-74)
through (2-77). Consider the case A > 0. The optimum fuel input

sequence is, from Equation (2-74),

u(®) = u(2) = ... = u(¥-1) = 0, u®) = /e N DAT (4-2)
Without any loss in generality, let the initial state ¢ be positive.

Then if

c >e(N-1)>\T , (4-3) -

the last member, u(N), exceeds the saturation limit, so that, although

the sequence of Equation (4-2) does of course satisfy the deadbeat

constraint
N
c= Z u(j) hJ (4-4)
51
N
. j=1)AT )
i=1
it does not satisfy the saturation constraint
[ €1, 3=1,2,...,x5 . (4-6)

Let the set of all initial states whose linear fuel optimum input
sequence satisfies the saturation constraint be called FN' For first

order systems FN is a portion of the real line, given by

Bo= |cle=uwme®™Dr jum| <1 | . 4-7)

If c does not lie in F,_, but does lie in f"

N’ where for first order

systems,
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N
. j-1 . .
c= Z u(J)e(J )XT; |u(J)| <1, ij=1,2, oo, N
j=1

(4-8)
then there is, by definition, a sequence satisfying Equations (4-5) and

(4-6). The problem of finding the input sequence which minimizes

N
F= ) |ul (4-9)
j=1

subject to these equations can be solved intuitively for first order
systems. The telescoping rod analogy, described in Chapter III, can be
again used to advantage.

There are available N rods, corresponding to the invariant vectors
Ej’ j=1, 2, eeey N, able to be extended continuously from zero length
up to a maximum length e(j‘l))\T, =1, 2, oo, N. For first order
systems these same rods are to be placed end to end along the initial
condition line, beginning at the origin and stretching out to reach the
initial state. The fuel used is measured by summing the fractional
extension of each rod used.

The maximum length of the N-th rod, corresponding to EN’ is

greater than any of the others, so that if ¢ is not in F_, this rod

should remain at its maximum length, iu(N)' = 1, and the task of reaching

c continued with the next longest rod, corresponding to hN-l' If

N-DAT + e(N-Z))\T

|gl > e (4-10)

the (N-2)-th rod is used, and this process continues until ¢ is eventually

?
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reached. For N = 3, Figure 53 shows the members of the fuel optimum
input sequence, and the sets r; and F3. The optimum sequence is
denoted Bf. Figure 53 is essentially a graphical method of finding the
input sequence gf in an open loop manner.

If A= 0, the plant is given by

AT

Gp(s) = ’ (4-11)

and each invariant vector is of unit length. The sequence lz_f is, there-

fore, not unique, unless of course ¢ lies on the tip of I_;q The set

rIN is simply the set of all initial states ¢ that satisfy

-NcgN . (4-12)
Choosing the input sequence of Equation (2-75), that is,

u(j) =c¢/N, j=1, 2,..., N, (4-13)
the set FN is equal to the set r; Therefore, if, from Equation (4-13),

Iu(j)l > 1, then ¢ is not in f; and no solution is possible.

The input sequence for the case A ¢ 0, corresponding to an
unstable plant, is obtained in an open loop manner by exactly the same
considerations used for the case A > 0. The essential difference is
that, since El is now the longest vector, FN is always the set of initial

states ¢ satisfying
'_gl {1. (4-14)
The set r;] does not increase indefinitely with increasing N, but rather

approaches a limit:

Lim, r' -

N— oo N

1
c =-——->-\-f,>\<o . (4-15)

1+ e

e}
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ITI. HIGHER ORDER SYSTEMS

For the general n-th order system, the minimum fuel problem with
amplitude constrained inputs is the problem of minimizing Equation (4-9)
subject to both Equation (4-6) and the deadbeat constraint. In the
state space, the deadbeat constraint is

cu=x(0) |, (4-16)
and in 'C -space the constraint is

c=a+HD ., (4-17)

In the solution space the set of sequences that satisfy Equations
(4-6) and (4-16) is the intersection of the (N-n)-dimensional hyperplane
of Equation (4-16) with the N-dimensional hypercube defined by Equation
(4-6) . Assuming that x(0) is in r, Equation (A-60), the minimum fuel
problem is to find a point u in this intersection which minimizes the
fuel, Equation (4-9). Any point u in the solution space is associated
with a certain fuel consumption, just as it is associated with a certain
energy consumption: see, for example, Figure 28, page 75. Figure 54
shows, for the case N = 2, the iso-fuel surfaces for three different
values 6f F. Figure 54 also shows the set of u(l) and u(2) which
satisfy the deadbeat constraint of a first order system. This is the
line

x(0) = u(l) 1, +u® 1, , (4-18)

where x(0) and the first two canonical vectors, I and I,, are scalars.
The minimum fuel input sequence without the saturation constraint is

then u(l) = 0, u(2) = 1.45, and the constrained minimum fuel sequence is
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a2y §

x(0) = u(l)_l_'l + u(Z)_r._':Z

Figure 54. Iso-fuel surfaces for a first order plant with N = 2,
giving the linear, Yis and constrained, u®, fuel optimum input sequences.
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uf(l) =1, uf(l) = 0.75. These points are shown as u, and Ef respec-
tively in Figure 54.

The general problem can be formulated as a linear programming
problem, and Torng gave a detailed example to illustrate the method of
formulation and solution (29). However, the method requires the use of
a digital computer. 1In order to gain insight into the minimum fuel
problem, techniques are developed similar to those used in the minimum

energy problem.

The Fuel Problem in @ ~space

B -space can be utilized to consider the constrained minimum
fuel input sequence. Since UN-n is the set of all corrections B, which
when added to _130 give an input sequence satisfying Equations (4-6) and
(4-17), this set not only contains the correction for the minimum energy
input sequence, but also contains at least one correction, Qf, which
gives a solution to the minimum fuel problem. Let such an input sequence

be called _gf. Then

Ef = 20 + gf (4-19)
o . . . gf . .
where u” is the linear minimum energy input sequence, and ¢ 1is given.

by Equations (3-47) and (3-54) as

ot -1 g
gf = = . (4-20)
éf

Ef

Before considering further how to obtain Ef, it should be noted that

o .
when ﬁ -space is used, it becomes necessary to calculate u . While
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B -space may be useful to consider the fuel problem, for example, if
it is desired to compare Qe and Qf, the calculation of EO may be avoided

by studying the fuel problem in the partitioned solution space.

. The Fuel Problem in the Partitioned Solution Space

By partitioning the matrix C into R and Q and the input sequence
u into a and b, the deadbeat constraint of Equation (4-16) was trans-
formed into the deadbeat constraint of Equation (4-17). Just as the
correction space containing the N-vector g was partitioned into O( -
space and /6 -space, each containing respectively the n-vector @ and the
(N-n)-vector B, the solution space may be partitioned into two spaces:
/& -space being n-dimensional with coordinates u(l), ..., u(n) con-
taining the vector a, and B -space being (N-n)-dimensional with
coordinates u(n+l), ..., u(¥) containing the vector b. The relationship
between these spaces L and B is then given by Equation (4-17).

1f the input sequence is to satisfy the saturation comstraint,
the components of a and b must satisfy Equation (4-6). Let the set A
in/L-space be the set of all _é_ such that

lud|< 1, 3=1,2, ..., n, (4-21)
and let the set B in B -space be the set of all b that satisfy

]u(j)| €1, j=n+, ..., N (4-22)
These sets are respectively n-dimensional and (N-n)-dimensional hypercubes,
centered on the origins Jc;f their respective spaces. Now consider the

deadbeat constraint, Equation (4-17). Assume that N 2 2n. To any initial

state ¢ and input a correspond points in B—space lying on the (N-n)-

e G2 G 5 G o G0 S G G G S8 08 S5 63 S M M @
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dimensional hyperplane,

Hb=c-2a. (4-23)
If N = 2n, the hyperplane reduces to a single point, since H is then
n x n and may be inverted. The vector a must lie in the set A. There~
fore, the set of b which satisfy Equations (4-17) and (4-21) is the map
of the set of points ¢ - a, for all a in the set A, from ,&-space into
B -space. Let this set of b be called A'., Let the intersection of

B and A' be called U. Then if ¢ is in U contains at least one

N’

point b such that the input sequence

1]

u= (4-24)
b

satisfies the deadbeat and saturation constraints. The similarity

betweenB ~-space and ﬁ ~space is evident, In fact, if to any point

. . o .

in B-space is added the vector - b, and the coordinates ofB -space
- 1

are changed to those of B space, the sets BN-n’ An and UN-n are

respectively identical to B, A' and U.

Let the fuel cost associated with a be F,, then

F, = )] + ...+ le)| (4-25)
and that associated with b be FB’ then

Fy= pa@)] + oo+ Ju| (4-26)

The total fuel consumption is therefore F = FA + FB' The minimum fuel

problem with input saturation amounts to finding the point b in U which

minimizes FA + FB' The linear solution, which of course need not be in
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U, lies on at least one of the hyperplanes u(j) = 0, j =1, 2, .ee, N,
since N > n and a linear fuel optimum input sequence can be given with
at least N-n members of the sequence equal to zero. An optimum solution
under the saturation constraint must lie in U. If a linear solution
cannot be found in U, the constrained solution must lie on the boundary
of U. To illustrate this formulation in:IS -space, Figure 55 shows the
situation for a typical second order system with N = 4. The iso-fuel
lines FB are partially shown by the dashed lines. Each iso-fuel line
shown, for both EA and FB, is separated from the next by an increment
F = 0.1. The linear solution is found by starting at any point in the
space and moving so that the sum F = FA-+ FB is reduced. A minimum
fuel solution is obtained at a particular point b when any other point
in its neighbourhood causes FA + FB to increase, In the example, the
solution lies at the crossing of the lines u(2) = 0 and u(3) = 0. This
point, which is unique and is marked with a small circle for clarity,
is not in the set U. The optimum unique constrained solution lies at
the intersection of the lines u(2) = 0 and u(l) = 1, and is also shown
encircled.

While partitioning the solution space in itself provides a

graphical solution to the minimum fuel problem only for the cases n =1,
N3, and n = 2, N £ 4, it is useful as a means to investigate the

properties of the minimum fuel solution, just as ﬁ3 -space was used to

visualize the properties of the minimum energy problem.
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Figure 55. The minimum fuel problem solved in B -space for a

second order system with N = 4,
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IV. SECOND ORDER SYSTEMS

As in the minimum energy problem, it is of interest to know for
what initial states the linear minimum fuel input sequence satisfies

the saturation constraints, and is therefore itself a solution to the

constrained problem,

The Set FN

Let the set of all initial states whose linear minimum fuel
input sequence satisfies the saturation constraints be called FN' The
linear fuel optimum sequence, as shown in Chapter II, is not necessarily
unique. In order that the set FN have meaning, one method of generating
the input sequence must be established. For the moment, however,
consider the case where this uniqueness problem does not arise.

Recall that the faces of SN(l) are the 2p line segments
Ls(ii,ij), and these segments generate the cones Cthi,ij) as shown in
Figure 11, page 4l. For example, the line segment Ls(i,j) is the set

of points c where

= ui't—li + uj_]:lj’ ui’ uj =0, “i + uj =1, (4-27)

and the line segment Ls(-i,j) is given by the set of points ¢ where

= - = 1. -2

Suppose ¢ lies in Cs(ii,ij). The optimum input sequence is obtained

from Equations (2-84) and (2-85):

c=uf b +ofW by, W =0, k#L5 (4-29)




147

Assume for the moment that this gives a unique sequence. This requires
that the line segment which ends on + Ei’ the line segment LsQﬁi,ij)
and the line segment which starts from i,hj do not lie on the same
straight line. Then the set of all ¢ given by Equation (4-29) which

give an input sequence satisfying the saturation constraint is given by

¢ =4u(@) h, + u(d ll.j, Is<u(d) <1, 0=su(j) =1. (4-30)

For example, if c lies in Cs(i,j) the set is given by all ¢ satisfying

¢ = +u(i) P-i + u(j) Ej’ O=su{i) =1, 0=ul(j) <1, (4-31)

and if c lies in the cone CS(~i,j) the set is given by all ¢ satisfying

1o

= -u(i) Ei + u(j) Ej’ 0=ssu(i) =1, 0 =u(j) =1. (4-32)

If the linear input sequence is unique for all initial states in
fz , the set Ek is given uniquely. For each of the 2p cones Cs(ii,ij),
form the set of all ¢ satisfying Equation (4-30). This set is the set
FN. FN is of course symmetric with respect to the origin and contains
the set SN(l). An example of this set is given in Figure 56, for a
typical underdamped second order plant with N = 5,

Now consider the case where there is a region in r; for which
¢ has no unique optimum input sequence. For example, the plant 1/s2,
see Figure 14, page 47, has the regions C(1,N) and C(-1,~N) in which
this problem of non-uniqueness arises. One way to get around this
problem would be to use Equation (4-29) regardless of whether the

sequence is unique or not, and then F,_ is given uniquely. This is not

N

very satisfactory however, since another set FN can always be found
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Figure 56. The set S_(l) and the corresponding set F
typical second order underdamped plant.

5

for a

o
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merely be choosing another rule for states having non-unique optimum
input sequences. However, once one particular method of choosing the

input sequence has been decided upon, the set FN can be generated.

The Fuel Problem in /X\ -space

If N € 2n, the fuel problem can be conveniently formulated in
/A\ -space. The deadbeat constra%st, Equation (4-17), gives
a=c-Hb . (4-33)

Equation (4-33) may be written as

2=c by uletl) - b, uek2) - oo - b ou@) (4-34)
The set,
N
r;ln = la li = :E: by w(i)s Iu(jﬂ €1, j=ntl, ..., N] ,
j=ntl
(4-35)

is an n-dimensional polygon centered at the origin of /&\-space. The
right hand side of Equation (4-34), under the saturation constraints of
Equation (4-22) is therefore the set - l_k:n centered on the point

a =c. With N 2n, any point a in A uniquely defines an entire input

sequence, and, if the point also lies in the polygon c - r; the

L
sequence will take ¢ into the origin while satisfying the saturation
constraints. The fuel consumption of such a sequence is F = FA + FB.
Second order systems, n = 2, can be examined graphically for
N =3 and N = 4. Although these cases are very restricted, they do

reveal several interesting aspects of the minimum fuel problem, and

indicate how more general cases might be approached.
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The case N = 3. The set A is given by Equation (4-21) as a

square centered on the origin, and the right hand side of Equation
(4-34), satisfying Equation (4-22), is the set of all a given by,

a=c-hu@d, @)1 (4-36).

Therefore, if a = ¢, FB =0, and if a = ¢ + h3, F, = 1. The point a

" which minimizes the fuel, F = F, + FB’ can therefore be found for any

A

state ¢ in [;. The coordinates of tf -space serve to give a directly,

since when u(3) = 0, then a =c. Thus, any c in {f gives the vector a
directly, which in turn gives the vector b. Figure 57 shows a typical
second order system, which, as shown for N = 3, gives a unique fuel
optimum input sequence for any initial state., The set FN is shawn by
the heavily dashed line, and the iso-fuel lines FA as the lightly dashed
lines. The following properties of the minimum fuel input sequence with

input saturation can be observed for this example.

1. 1In region abcd, uf(l)

=1,
. f
2., In region ecgh, u (3) = -1.
3. 1In region oegh, uf(l) = 0,
4, 1In region phgm, uf(Z) = -1,
5. 1In region koph, uf(3) = 0.

Because of symmetry these regions are sufficient to characterize the
sequence for all states in r;, since if one of the inputs is fixed,
the other two are given by Equation (4-36). This method of obtaining
the input sequence is not very convenient, especially since the initial

state must be identified as belonging to a particular region, and
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Figure 57. The sets [; and F
the fuel optimum input sequence.

3

divided into regions characterizing
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furthermore, the situation becomes more complicated for N = 4. A closed
loop method results in a much simpler way of obtaining the input
sequence. A closed loop method requires that, given a settling time of
N sampling periods, only the first input be determined. The problem‘is
then repeated for‘a settling time of N-1 sampling periods and so onm,
until N = 1. The controller then identifies the state at each stage
of the regulation process, generating in turn u(l) for an N-member input
sequence, then u(l) for an (N-1)-member input sequence, and so on until
N = 1, when obtaining u(l) for N = 1 completes the regulation.

In Figure 57, the region oegh contains initial states whose
three-member fuel optimum input sequence has uf(l) = 0. 1In abcd,
uf(l) = 1. Figure 58 shows these two regions and their symmetrical

= 1 have horizontal cross-hatching,

counterpart. . The regions qu(l)
and those for uf(l) = 0 have vertical cross-hatching. In general, let
the set of all states where uf(l) = 0 for a given N, be called QN.
Therefore, the region in Figure 58 with the vertical cross-hatching is
denoted Q3. The regions in r; between the cross-hatched regions
contain states where luf(1)|4€-l. Suppose the initial state is given

in a region where qu(l)l < 1, and consider érojecting a line parallel
t°.21 from the point ¢ until it just ;ouches the region Q3. The length
of this line defines qu(l)l. 1f, in order-to reach Q3, the projection
is in the direction -hl, then uf(1)3>0. If the projections needs to be
in the directién fgl, then uf(l) < 0, This can be formalized as follows.

Assume ¢ is in [; and let ¢ - HEI lie on the boundary of Q3. Then
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Figure 58, Characterization of uf(l) for N = 3.
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if ¢ 1is not in Q3, uf(l) = sat. p ,

if ¢ is in Q3, uf(l) =0 , (4-37)

where the "sat.” function is defined as

-1 if § -1
sat. p = po if Iu' <1 . (4-38)
1 if p 1

Figure 58 shows two initial states c, and c,. For [P uf(l) = 0.5,

1 2
and for Cys uf(l) = -0.75. Having generated and applied the first

input for N

i

3, the initial state will have moved, assuming no adverse
disturbances, from c to c' in r;. In r; the remainder of the sequence
is uniquely determined by

uf(2) ]

= . (4-39)

uf(3) cé

Figures 59, 60, 61 and 62 show representative examples of the
set Q3 and its relation to f;. Figure 59 illustrates Q3 and f; for
the plant

1 ;
Gp(S) = ;7 . (4-40)

Figure 60 corresponds to the plant

1
G (S) =73 2 ’ (4'41)
P s + 2as + b

where the poles, real or complex, satisfy the non-uniqueness criterion

of Equation (2-91). Figure 61 gives Q3 for the plant
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Figure 59. The set Q; for the plant 1/32.
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1
(s+a+ jb)(s+ a - jb) ’ (4-42)

Gp(s) =

where the poles are such that the input sequence is always unique, and
finally, Figure 62 shows a plant of the form of Equation (4-42) where
the poles have been tuned.

Consider the plant of Equation (4~40). Since it is known,
Chapter II, page 46, that the linear minimum fuel sequence is not
unique in C(1,3) and C(-1,-3), it is to be expected that Q3 is not
unique. The vertically cross-hatched region of Figure 59, page 155,

shows one possible extreme that may take. This is the set
3

3

t = Zzuj Bys °<uj€1 . (4-43)
j=

The smallest Q3 is the set of points lying on the line formed by
joining EZ to 23 and 122 to -33. This.is part of the boundary of the
largest possible Q3, Equation (4-43), and is shown by the solid line
in Figure 59. Another plant which has a non-unique Q3 is shown in
Figure 60, page 156, corresponding to the plant of Equation (4-41).
The largest Q3 is again shown by the vertically cross-hatched region,

and is

Q = £|£= Zujhj; Iuj|él > (4~44)

and the smallest Q3 is given by
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3

The next two plants have unique sets Q3. Figure 61, page 157,
corresponding to the underdamped plant of Equation (4-42), shows El
interior to the set S3(1). Figure 62, corresponding to the tuned plant,
also has 21 interior to the set S3(1). In both cases Q3 is given by
Equation (4-44). The size of Q3 relative to r; is a measure of the
usefulness of the first member of the control to the regulation process.
If Q3 is large, as for example when‘h1 is interior to the set S3(1),

see Figure 61 and 62, the main burden of the regulation usually rests
upon the last two inputs. When the size of Q3 is small relative to

r;, the first control plays an important role in the regulator process.

Figure 59 and, to a lesser extent, Figure 60 are examples where the

first input may be at its limit for a large region of initial states

in r;.

The case N = 4, It is a little more complicated to obtain the

set Q4’ and, depending on the particular invariant vectors of the
plant, Q4 has many more possible shapes than Q3.

The set A is unchanged, given by Equation (4-21), but the right
hand side of Equation (4-34) satisfying Equation (4-22) becomes the
set of a sétisfying

a=c- [byu® +n,u@] . [ud|<1, [u@] < 1. @-46)

The set Q4 may therefore be found by methods similar to those illustrated
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in Figure 55, page 145. 1In practice a transparent (onionskin) template

of the polygon

hy u@) +h, u®); Ju®)| <1, Ju®)| L1 (4-47)
is constructed, and the iso-~fuel lines, FB = constant, are drawn on
this template. The iso-fuel lines FA = constant having also been

constructed in the set A, the template may be positioned with its center
anywhere in [Z, thus examining the first input member of the fuel

optimum input sequence for all possible initial states in rz. The

plants
1
NORE (4-48)
s
and
G (s) = —— 4-49
P s) = s(s + a) (4-49)

were studied in this manner and the sets Q4 constructed. Again, as would
be expected, for plants with integration the set Q4 is not unique,
Figure 63 shows that the set Q4 for the plant of Equation (4-48) may
vary from just the solid line, formed from -24, -33 -32 and 24, 23, 22,
to the entire region enclosed by this solid line and the dashed line.
The plant of Equation (4-49) has a set Q4 formed in exactly the same
manner.

For N > 4, the problem of finding Q4 becomes very complicated

when tackled in this manner. However, there are two considerations which

can help in the graphical construction of the set QN.




Figure 63.

Possible sets Q, for the plant 1/s2.
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1. 1Initial states lying on the boundary of r; have unique
input sequences (the set U, equivalently UN-n’ is a point, as is shown
for example in Figure 43, page 111). It is a straightforward matter

to find the input sequence for initial states on the boundary of r;,

*
and u(l) = uf(l) can therefore be found uniquely for such states .

2. The set FN can be of help in finding QN. The set FN includes

a considerable proportion of the states in r;. It can therefore be

used to obtain uf(l) when ¢ is in FN’ and to indicate if uf(l) =0

when ¢ is not in FN'

Second Order Systems with Integration

If the plant has integration; i.e, is of the form of Equation
(4-48) or Equation (4-49), the set QN can be found for all N. Desoer
and Lee (22, page 371) defined the set TN(f) as the set of all initial
states which can be brought to the origin in N sampling periods with a
fuel consumption F-( f. Therefore, in ff -space,

N N
O = e]e= ) ww b )] < 1, Y ol <] .
(4-50)
Iff=1, TN(f) becomes SN(l)’ and if f = N, TN(f) becomes r;. Desoer

and Lee demonstrated that IN(f) is convex and contains the origin, and

*There is one exception. If the second order system has tuned
complex poles, states on the boundary of [N do not necessarily have
unique input sequences, However, as will be shown, for such systems
the set QN can be found quite easily from other considerations,
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that if an initial state ¢ is in BTN(f), the boundary of TN(f), any
control sequence which satisfies Equations (4-4) and (4-6), and for
which F = £, is an optimum input sequence. After some rather detailed
manipulations, it was shown that one set QN for second order plants of

the form of Equations (4-48) and (4-49) could be given as

N
_C_ = Zujhj; 0<Pj<19j=2, 3’ ""N .
j=2

Q= e

(4-51)
Figures 59, page 155, and 63, page 162, have already shown respectively
the sets Q3 and Q4 given by Equation (4-51). The set QN is not unique,
and Figure 64 shows alternative sets Q3 and Q4 for the plant of Equation

(4-48).

Second Order Systems with Tuned Complex Poles

The plant

G (s) = 1 (4-52)

P (s+a+ jb)(s + a - jb) ,
can be tuned by making

bT = 12‘- (4-53)
as explained in Chapter III, page 130, and the invariant vectors hl’
33, ES’ ... lie in ff -space on the line c, = 0, and EZ’ 24, 26’ cos
lie on the line c, = 0. Figure 52, page 131, shows these invariant

1

vectors for a typical tuned plant. The fuel optimum input sequence can
be found for these tuned plants in a very straightforward manner, by

either open or closed loop methods. The invariant vectors for a tuned
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Figure 64, Alternative sets Q3 and Q4 for the plant 1/32.
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plant have the orthogonality property,

hi h, =0 , (4-54)

=i =
if i is an even integer and j is an odd integer. Consider the odd
numbered invariant vectors lying along the line ¢, = 0. These vectors
cannot be utilized in any way to help represent a component ¢, of an
initial state c. Similarly the even numbered vectors, lying along the
line c, = 0, cannot contribute towards a representation of the component
1 of the initial state. The input sequence may therefore be divided
into two parts, one part containing the odd numbered members, u(l),
u(3), ..., and the other the even numbered members, u(2), u(4), .o.
Then, compare Equations (3-133) and (3-134), the deadbeat constraint,

Equation (4-4) becomes with N arbitrarily chosen even,

u(l) - ue?®T 4 usye®® T - L (1) FD/ 2, (yy M-DAT |

c1 =
(4-55)
c, = u(@ - u@e™@T + u(e)e*d T - ., (-1) D2 W-D)al
(4-56)
Now compare the first order plant,
6 = 737 (4-57)
P s + 2a ¢

The initial state for this plant is a scalar quantity, let it be ¢, and

the deadbeat constraint is

T (N-1)2aT

¢ = u(l) + u@e?® + u®e*T + ... + u@e . (4-58)

An example of the fuel optimum input sequence for the plant of Equation
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(4-57) is shown in Figure 53, page 138. Similarly the fuel optimum
input sequence for a tuned second order plant is shown in Figure 65.
Figure 65 is a graphical method of obtaining the sequence, and N is
chosen as N ='6. The two parts of Figure 65 are seen to be identical
except for the labelling of the input members.

The input sequence may also be obtained in a closed loop manner.
Since the first input, uf(l), is always independent of the component

Cos it is only necessary to define QN for the component ¢ It is

1.
convenient, however, to give uf(l) in the equivalent graphical form

shown in Figure 66. Since 26 does not lie on the ¢ axis of tf -space,

Figure 66 is applicable to settling times of five or six sampling
periods.

To conclude this discussion of the fuel optimum sequence for
tuned plants consider Figure 67, which shows the set [; containing a
given initial state c¢c. Figure 65 gives the fuel optimum representation
as

c=0h

c L+ 0.5h, -0.5h

3 -h +ho+h . (4-59)

—6

S

Since the first input is zero, uf(l) = 0, the system is allowed to run

freely for one sampling period, after which the state has reached the

point 51 given by
< = 0.511_1 - 0.5 22 - 33 + 24 + 25 . (4-60)

The plant then receives an input of +0.5, and moves to the point Cys

where
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f
u(j)g j odd

ut(3)

-l

by

£
1
u (1) uf(S)

a. 0dd numbered input members

uf(j)‘l j even

14
uf (4)
uf(2)

Figure 65. The fuel optimum input sequence (open loop) for a
tuned second order plant with N = 6. )

b. Even numbered input members
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)

h h iy [

c

23 = 1

1 ES
a., The invariant vectors hl’ EG and 35
[} uf(l)

14

'
= o
ol
o

- o
ol
ot

'

d. N=1or 2

Figure 66. Graphical forms of the closed loop method for finding
the fuel optimum input sequence.
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o 3

-

Figure 67. A fuel optimum trajectory for a tuned second order

system with N = 6,
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C

_2='0'5.13

1_-32+g3+§4 . (4-61)

Over the next sampling period the input -0.,5 is applied and at the end
of this sampling period the plant state is at

c, =-h

5 +hy+h,, (4-62)

1
following which the inputs -1, +1, +1 are applied successively, The

trajectory between the sampling periods is indicated by the dashed line

in Figure 67.




CHAPTER V
PRACTICAL IMPLEMENTATION OF THE OPTIMUM CONTROL SYSTEM
I. INTRODUCTION

The purpose of this chapter is to discuss how the theory of the
preceeding chapters can best be utilized to generate the minimum energy
and minimum fuel input sequences. Both open loop and closed loop
methods are considered, the major portion of the chapter being concerned
with the closed loop control of first and second order systems. The
closed loop controllers required vary in complexity from simple direct

feedback, to time-varying piecewise linear gains feeding a logic unit.
II. CLOSED LOOP VERSUS OPEN LOOP CONTROL

The configuration of the controlled plant and the controller is
shown in Figure 2, page 3. The controller receives information on the
state of the plant throughvidentification of the state variables,

xl(t), cens xn(t), Not all of these variables may be available, and
some may therefore have to be estimated. However, it is tacitly assumed
that, whenever necessary, the state vector,

'xl(tj

x(t) = . , (5-1)

x (t)

172
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can be found at each sampling period, t = kT, k = 0, 1, ... . Having
been supplied with the state vector, the way in which the controller
acts on this information determines whether the system operates in an
open loop or closed loop manner. The desired state of the plant is at
the origin of the state space and at time t = 0 the plant is in some
disturbed state, x(0) # 0. The controller is allowed a total time of
NT seconds to bring the plant to the desired state in some optimal
fashion. 1If the controller, being given the state x(0), generates the
entire optimum input sequence, u(l), u(2), ..., u(N), on the basis of the
state x(0) alone, the control is said to be open loop. If, however,
the controller is structured so that it requires knowledge of the plant
state at each sampling period in order to generate the optimum input
sequence, the resulting control is said to be closed loop. Open loop
control has the disadvantage that if the system encounters any disturb-
ances during the time interval 0 < t { NT, the primary mission, that of
bringing the state to the origin, will almost inevitably fail to be
accomplished. On the other hand, closed loop systems, being based on
a feedback principle, can still complete the'primary mission if the
disturbances are not too severe. It is beyond the scope of this disser-
tation, however, to attempt to discuss the various cited advantages and

disadvantages of each method.
III. OPEN LOOP CONTROL

The main body of this dissertation has been concerned with open

loop methods for solving the minimum fuel and energy problems. The
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open loop method of solution follows as a natural consequence of the
particular approaches used on the problems. The one exception is, of
course, the closed loop approach to the minimum fuel problem with input
saturation discussed in the latter half of Chapter IV. The open loop
approaches to the various problems are now presented. In such methods,
the entire optimum input sequence is calculated, stored, and fed to the

plant piece by piece.

The Linear Minimum Energy Input Sequence

For the general n-th order plant, the linear energy optimum
input sequence, E?: can be calculated directly from Equation (2-37):

u® = ¢t [cct]-1 x(0) , (5-2)

where C is the N x n matrix given in Equation (2-4). The inversion
required to obtain the n x n matrix [Cct] -1 can be performed on a
digital computer if, say, n > 4. If the sequence Eo is to be studied
over a range of initial states, the plant is of the first or second
order and N is not too large, then graphical methods may be more con-
venient. The graphical approach is given in Chapter II, and is based

on Equation (2-25),

b =H a , (5-3)
relating the two parts of Eo.

Both of these methods are described in detail by the example on
page 58, which concerns itself with the plant 1/s2 with the settling

time given as four sampling periods.
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The Linear Minimum Fuel Input Sequence
First order systems are solved, the solution being given by
Equations (2-74) through (2-77). The plant
G (s) == (5-4)
P s

has an infinite number of possible input sequences. Two of the more
obvious ones are given in Equations (2-75) and (2-76). Second order
systems are solved if the state ¢ can be identified as belonging to one
of the cones Csﬁtiitj)' Equations (2-84) and (2-85) give the solution
when such an identification has been made. The minimum fuel input
sequence may not be unique, and this knowledge can prove useful, For

example, consider the plants,

1
Gp(s) = sz (5-5)
and
G (s) = ——1 (5-6)
p s(s+ X)) °

The set 55(1) for the plant of Equation (5-5) and an example of the
set 84(1) for the plant of Equation (5-6) are shown in Figure 14, page
48 and Figure 15, page 49 respectively. These figures show by the
cross-hatched areas the regions in which the minimum fuel input sequence

is not unique. It will be noted that the invariant vector h. can always

1
be used in conjunction withhN to give a fuel optimum input sequence
for any initial state. Therefore, if the plant is given by either

Equation (5-5) or (5-6), the optimum input sequence can always be

obtained as
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u(l)
= [B; by] e u@, ee., w1 =0 . (5-7)
u(N)

Equation (2-114) gives such an input sequence for the minimum fuel
example beginning on page 64. As another example of a second order
system for which the fuel optimum input sequence is readily obtained,
consider the case of a plant of the form

1
(s + a+ jb)(s + a - jb)

G (s) = 5-8
P() (5-8)
where the tuning condition of Equation (3-130) is satisfied; i.e.,

bT = . (5-9)

Nla

The first six invariant vectors are shown in Figure 52, page 131, for

the case a > 0. The components < and ¢,y of the initial state c can

therefore be represented by Equations (3-135) and (3-136):

N

ey = v+ y @ pUTDZEDAT o (5-10)
=3
N *

c, = u(2) + Z{: u(j)(-1)(‘]“2)/2e("l-2)aT , Jj even. (5-11)
=4

Without loss of generality, suppose that N is an even integer. The

invariant vectors EN and BN-I are therefore given by

0
b, = (5-12)
(_1)(N-2)/2e(N~2)aT

and
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(-1) (N-2)/2 (N-2)aT
EN-I = . (5-13)
0
If a > 0, these are the longest invariant vectors, and, compare Equation
(2-74), the unique fuel optimum input sequence is

u(l) = u(2) = oo = u(N-2) = 0
u(v-1) = o (-1) FD/2-(N-Dyat . (5-14)
u(N) = CZ(_l)(N-Z)IZe-(N-Z)aT
If a = 0, all the invariant vectors are of unit length, corresponding
to the plant

1
Gp(s) =— bT =

(s” + bz)

NE

s (5'15)

and one solution to the minimum fuel problem would be Equation (5-14)
with a = 0. Another solution, compare Equation (2-75), with N even, is

(N-2)/2

u(l) - u(3) eee = (-1)

[
"

u(N-1) = 2c1/N
. (5-16)

w2 = - u@ = oo = DDy < 2e/x

Finally, if a < 0, corresponding to an unstable plant of the form of
Equation (5-8), the unique fuel optimum solution is, compare Equation
(2-77),

u(l) = s u(2) = Cy5 u3) = u(4) = .o =u(N) =0 . (5-17)

More general second order systems, as mentioned above, are

solved by Equations (2-84) and (2-85). 1If the initial state ¢ lies in
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the cone Cthi,ij), the state can be uniquely represented as
c=u; h 4y, B, (5-18)
giving the minimum fuel input sequence as
u(i) = s u(j) = Moo wk) =0, k=1, 2, ..., N, k # i,].
(5-19)

If N is large, and the plant has real poles, the state space may be
partitioned by many cones, and, even with the help of a digital computer,
it may be a problem to identify the state as belonging to a particular
cone. As is shown later, a closed loop procedure may help to solve
this problem, but hybrid techniques are necessary.

Higher order systems can, in principle, be treated by the
techniques underlying Equations (5-18) and (5-19), but in practice,
since the cones must be defined and identified in n-dimensions, it may
be a very difficult task to obtain the solution. A general method

would be to use a linear programming technique.

The Minimum Energy Input Sequence with Saturation

The problems involved in obtaining the optimum input sequence
when the input members are subject to amplitude constraints are discussed
in detail in Chapter III. If the linear minimum energy inmput sequence,
g?, has members which exceed the saturation limits, it is shown that
the constrained minimum energy solution, E?v must have one or more of
its members equal to the saturation limit. Theorems 2 and 3, given on

pages 103 and 120 respectively, can be used to find which members of

gé are equal to the limit.
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If only one member of EO exceeds the saturation limit,
o,. o,. . . .
Iu (J)‘ >1, lu (1)| <1, i=1, 2, .ee, N, i# j, (5-20)
Theorem 2 says that
e,. o,. :
u (j) = sgn. u (i) . (5-21)
The problem then becomes: minimize
N
2
Z u(i) (5-22)
i=1
i#]j
subject to
N
c - [sgn. uo(j)] Ej = Z u(i) Ei 3 Iu(i)l £1. (5-23)
i=1
i#]

If the solution to this second problem has all its members lying within
the saturation limits, the original is solved. If only one of its
members exceeds the saturation limit, Theorem 2 again guarantees that
Equation (5-21) gives the corresponding member of ge. Suppose that, on
continuing in this manner, Theorem 2 is applicable for each new problem;
i.e., no more than one member of each corresponding linear minimum
energy input sequence exceeds the saturation limits: eventually,
assuming of course that the initial state c is in r;, there will result
a problem whose linear energy optimum input sequence satisfies the
saturation contraint. This solution, combined with all the members which

were given by Equation (5-21), constitutes the sequence 3?.
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I1f more than one member of_go exceeds the saturation limit,
Theorem 3 is applicable. Theorem 3 gives two conditions which must be
satisfied before Equation (5-21) can be used to give the members of 2?.
The first condition is Equation (3-105), and this may be verified by a
simple computation. The other condition which must be satisfied is
stated in Equations (3-106) and (3-107). In general, it would be a
very complicated task to check this condition each time Theorem 3 was
applicable. Therefore, since it seems likely that this condition will
rarely be violated, it is suggested that when more than one member of
a linear minimum energy sequence exceeds the saturation limit, only
the test of Equation (3-105) be used to determine for which of these
members Equation (5-21) is applicable. 1If, on following the step by
step procedure outlined above, there eventually results a linear energy
optimum sequence which does satisfy the saturation constraints, the
omission of the second condition will have been justified. On the
other hand, if it eventually becomes obvious that it is now impossible
to take the state into the origin with the t~onstrained inputs associated
with the remaining invariant vectors, then Equation (5-21) has been
applied incorrectly to one or more of the input members. An example
of this is given on page 110.

It was shown in Chapter III that first order plants and second
order plants with integration or tuned complex poles can always be
solved by the systematic use of Equation (5-21). The examples on page
76 and page 129 give the minimum energy input sequence for a first order

plant and the plant 1/52 respectively.
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The open loop technique of nonlinear programming is a general
method which can always be used to obtain a solution to the minimum

energy problem with input saturation (31, 32).

The Minimum Fuel Input Sequence with Saturation

Chapter IV discusses the general problem of obtaining the
minimum fuel input sequence with input saturation. The optimum sequence
for first order plants and second order underdamped plants with tuning
can be obtained quite easily in open loop form. Figure 53, page 138,
gives an example of the optimum sequence in graphical form for a first
order plant. Figure 65, page 168, gives the optimum sequence for the
tuned plant in a graphical form. Second order plants with real poles
and untuned underdamped plants are best treated by closed loop techniques.
Alternatively, they can be approached in an open loop manner by the use
of linear programming (29, 31). Linear programming may also be used as
a general method of obtaining the amplitude constrained fuel optimum

input sequence for higher order systems.
IV. CLOSED LOOP CONTROL

If the system has closed loop control, it is generally implied
that the input sequence is generated as

u(t) = f[xl(t), (), +ees x (6), t] (5-24)

where f is some scalar function of the state vector x(t) and the time
t. The most general form of Equation (5-24) that is required to cover

the cases discussed below is
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u(k + 1) = £ [_)g(k), kT] , k=0, 1, eeey N-1 . (5-25)
Equation (5-25) means that the control level, u(k), over the time

interval (k - 1)T < t <KkT is obtained from some function of the state

variables at the time t = (k - 1)T, and, as implied, this function may

not be the same at each sampling instant.

The Form of the Feedback Function

Equation (5-25) may take several different forms. Before
discussing the closed form solutions to the minimum energy and fuel
problems, it is useful to classify some of the different types of feed-

back that will be of interest.

Time-invariant (constant) linear feedback. Figure 68 shows the

controller configuration. The controller gives the input sequence as

u(k) = fl xl(k) + f2 xz(k) 4+ oo + fn xn(k) (5-26)

where fl’ f2’ ooy fn are constant. Such feedback has been used to
implement linear time optimum control (7), when the coefficients fl’
f2, coes fn constitute the first row of the matrix R-l. Another example
where time invariant linear feedback can be used to implement an optimum

control sequence is when the cost function is of the form

N
Z x(0%p x(0 +u"su , (5-27)
k=1

where, in general, S is an n x n positive definite matrix and P is an
N x N positive definite matrix. If N—» o0, the optimum feedback

approaches the form of Equation (5-26), (1, page 486; 17, page 1823).
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Time-invariant piecewise linear feedback. The input sequence for

the time optimum deadbeat regulator with input saturation has been
implemented, for second order systems with real poles, by using only a
piecewise linear function of the state (14). Figure 69 shows a controller
configuration of this type. Third order systems with real poles require
slightly more complicated considerations (24). The linear transforma-
tion R‘-1 enables the controller to work with the state in 'fi -space
rather than :x: -space, The function f is a piecewise linear function
of the variable cz(t). This function can be implemented with the use
of analog devices (14). The output of the summing junction, f(cz) + ¢y
as will be shown later, represents the distance of the state ¢, in the
direction of the ¢, axis, from a line in two-dimensional ‘ei -space,

1

If the state lies to the right of the line, the quantity f(cz) + N is

positive, and if to the left of the line, f(cz) + ¢, is negative. The

1
ideal saturation function following the summation has the output

sat. {f(cz) + cl] , where the sat. function is defined by Equation

(4-38).

Time-varying linear feedback. If the controller employs time-

varying linear feedback, the input sequence is generated as

u(k)

fl(k) xl(k) + fz(k) xz(k) + cee + fn(k) xn(ko (5-28)

_:_E_(k) x(k), k=1, 2, ..., N . (5-29)
The physical configuration of the controller is the same as that shown

in Figure 68, except that the gains fl’ esey fn change, so that at each
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sampling period they have a predetermined optimum value. The cost
function of Equation (5-27) requires such a feedback functiom if N is

finite (1, 5, 17).

Time-varying piecewise linear feedback. Figure 69 shows an

example of time-invariant piecewise linear feedback. Suppose. the
function f does not remain constant, but instead takes on different
forms at each sampling instant. The resulting feedback is called time-
varying piecewise linear feedback. A slightly more complex form of
this type of feedback uses two such time-varying functions, each fed
with the variable Cye With the help of some elementary logic, the
controller is capable of finding the distance, in the direction of the
¢y axis, of a state ¢ from some time-varying polygonal region in a two-
dimensional ff -space.

Having considered the types of feedback that may be used, the

closed loop control of the minimum fuel and energy systems are now con-

sidered in detail.

V. GLOSED LOCP CONTROL FOR THE LINEAR

MINIMUM ENERGY SYSTEM

The open loop solution to the linear minimum energy problem can
be obtained from Equation (5-2). If the suggested settling time is
N-sampling periods, the n x N matrix C in Equation (5-2) is given by
Equation (2-4) as

C = [51, Lys dees EN] , (5-30)
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where
£j ==~ G(-iT) h(T), j=1, 2, ..., N (5-31)
are the first N canonical vectors, as given in Appendix A, Equation

(A-19). The first member of the N-member input sequence, g?, is given

by

u®() = £Q) x(0) (5-32)
where f£(1) is the first row of the matrix Ct [CCt] -1, and x(0) is the
initial state, given at time t = 0. Rather than calculating the second
row of this matrix to obtain u°(2), the closed loop procedure requires
the calculation of the first row, f£(2), of the new matrix Ct [cct] -1,

where the matrix C is now n x N-1, and is given by

CcC= [51,452, sees Iy g ] . (5-33)

After one sampling period the plant will have the state x(1), and the

second input to be applied is then

u®(2) = £(2) x(1) . (5-34)
If no disturbances were present over the first sampling period, u°(2)
as given by Equation (5-34) will be exactly the same as the member
that could have been obtained from the initial state, x(0), using the
second row of the original N x n matrix Ct [cct] -1, C being given by
Equation (5-30). To continue this feedback generation of the optimum
input sequence, let f£(j + 1) be the first row of the matrix Ct [cct] -1
when

C=[rs £ weer By ] » 320, 1L e, Nm (5-35)
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For j = N-n, the matrix C is given by

C = [51, Igs eees En] (5-36)

and this may be inverted. Equation (5-36) defines the matrix R, see
Equation (2-8), so that £(N-n + 1) is the first row of R-l. Since the
object of the regulating system is to force the state to the origin,

the feedback must be kept conétant for the remainder of the regulation
process. If no disturbances occur over the last n sampling periods, the
regulation will be completed in a total of N sampling periods. If such
disturbances do occur, the feedback will keep on trying to force the
state into the origin.

Thus, £(1) is the first set of gains in Equation (5-29), £(2) the
second set, and so on. The optimum controller uses these time-varying
gains, and the configuration is shown in Figure 68, page 183. At the
beginning of the regulation process the controller has the vector gain
£(1), and, operating on the state x(0), gives the hold device the first
optimum input level to be applied to the plant. During the time
0 <t T, this gain is replaced by f£(2), which, at t = T, operates on

the state x(1) to give the second input level. This process continues

until only n sampling periods remain. The feedback is then kept constant

at f(N-n + 1), producing the last n input levels, uo(N-n + 1),
uw’(®-n + 2), ..., O@-1), Om).

The implementation of these time varying gains may prove too
costly in practice, and it has been suggested that an approximation to

the minimum energy input sequence could be obtained by using the fixed
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gain £(1) for the entire input sequence (48). For plants with real
poles or heavily damped complex poles, a near deadbeat response is
attained, and the energy consumption is reasconably small. The choice
of N naturally has considerable effect on the settling time, and may

therefore be used as a design parameter.

VI. CLOSED LOOP CONTROL FOR THE

LINEAR MINIMUM FUEL SYSTEM

First Order Systems

Consider the first order plant,

Gp(s) = ﬁ—;\- . (5-37)

When XA\ >0, Equation (2-74) gives the unique fuel optimum solution as

u(l) = u(2) = aee = u(N-l) = 0’ u(N) = C(O)IE(N-l)AT’

(5-38)
where c{0), a scalar, is the initial state in 'ff -space. The controller,
having been allowed N sampling periods to bring the state to the origin,
therefore waits for N-1 sampling periods, and then applies the input
u=c(N-1) . (5-39)
If A= 0, there are many possible input sequences which take c(0) to
the origin with minimum fuel. The input sequence of Equation (2-75),
u(l) = u(2) = .e. = u(N) = c(0)/N , (5-40)
minimizes not only the fuel, but also the energy. If the input sequence
of Equation (2-76),

u(l) = c(0), u(@ =u@® =...=0 , (5-41)

is chosen, the minimum fuel regulation may be accomplished in only one
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sampling periode If A < 0, the input sequence of Equation (2-77) is
optimum, giving the input sequence as in Equation (5-41).

The implementation of these sequences as closed loop controllers
is straightforward. Consider Equation (5-39). The controller waits
(N-1)T seconds and then switches the state of the plant directly into
the zero order hold. The implementation of the sequence of Equation
(5-40) requires a time-varying gain, so that

u(k + 1) = c(k)/N -k, k=0,1, 2, ..., N-1. (5-42)
The sequence of Equation (5-41) requires only that the state be fed
directly into the sample-hold device. Figure 70 shows how these three

controllers might be implemented.

Second Order Systems

General second order systems. The principle of the closed loop

procedure is as follows. The sets Bsk(l), k=3, 4, ..., N are con-
structed as the convex hull, see page 36, of the set of 2k points,

+h, *hy, thy, ..., th

=2 =3 (5-44)

12
Suppose N-k sampling periods have elapsed since the time t = 0 when the
regulation began, and the state of the plant is c(N-k). The optimum
input u(N-k + 1) is then found by considering ask(l). If h, does not
lie on Bsk(l), the input u(N-k + 1) = 0. If h, does lie on ask(l), the
input u(N~-k + 1) may or may not be zero, depending on the location of

c(N-k). Consider Figure 71, which shows the two-dimensional ff -space

divided into six regions. Regions A and A are the cones Cs(l,-j) and
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l Figure 70, Closed loop implementation of the linear minimum fuel
input sequence for first order systems, 1/s + 2\.
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CS(-l,j). The regions B and B are the cones Cs(l,-i) and Cs(-l,j),
and the cross-hatched regions, C and C—, comprise the remainder of
tf -space. If c(N-k) lies in either C or C, u(N-k + 1) = 0. 1If
c(N-k) lies in, A or A , u(N-k + 1) is given by, see Equations (2-84)
and (2-85),
u(N-k + 1)
- [31 hj] o . (5-45)
u(j)
If c(N-k) lies in B or 3_, u(N-k + 1) is given by

u(N-k + 1)
= [Bn] 7 eovn (5-46)
u(i)

The procedure is initiated with k = N. By considering BSN(I) the input
u(l) is generated. Then the set BSN_I(I) is used to give u(2), and so
on, until only two sampling periods remain. The remaining two input
members, u(N-1) and u(N) are then given uniquely as

u(N-1) = cl(N-Z) . (5-47)
u(N) = cl(N-l) , (5-48)

where cl(k) is the first component of the state c(k).

The actual implementation of this procedure by a closed loop
controller is now discussed. Consider each of the regions where
u(N-k + 1) is not zero. In region A the minimum fuel representation of
the state c(N-k) is

c(N-k) = u(N-k + 1) El - u(j)_lgj . (5-49)
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In region A—, the representation is
c(N-k) = - u(N-k + 1) _}_11 + u(j) hj . (5-50)
In regions B and B_, the representations are, respectively,
c(N-k) = u(N-k + 1) 21 - u(i) -111’. (5-51)
c(N-k) = -u(N~-k + 1) _1:_1_1 + u(i) Ei . (5-52)

In any one of these four regions, u(N-k + 1) is simply the distance of
the state c(N-k), in the direction of + hl’ from the cross-hatched
region bounded by the lines y4 Ej and . Ei’ -0 < p<oo. The sign of

u(N-k + 1) is positive if c(N-k) lies in regions A or B, and negative

if it lies in A or B . Let

By Bi1
Ei = 3 hj = s 3J=2,3, ..., N, (5-53)
hi2 Bio
and define
hil
fi(CZ) = - E?z- C2 s (5-54)
h'l
fj(cz) = - —‘]—hjz c, - (5-55)

*
The quantity fj(c2 ), for example, is the horizontal distance between

2

the state c(N-k) lies in either region A or A . It can be seen that

*
the c, axis, at the point <y and the line hj’ ~oR0 <K p<L O . Suppose

uM-k - 1) = a =_fj[c2(N-k)] o (K . (5-56)

Similarly, if c(N-k) is in region B or B,
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u(N-k - 1) = b = £, [cz(u-k)] +e (R . (5-57)

Figure 72 shows how the value of a from Equation (5-56), b from
Equation (5-57), and cz(N-k) can be combined in a logical manner to
produce the optimum value of u(N-k + 1). For example, suppose both a
and b are positive and cz(N-k) is negative. The correct value of
u(N-k + 1) is therefore a = fi [cZ(N-k)] + cl(N-k). Figure 73 shows the
structure of the optimum controller. The gains fi(CZ) and fj(cz) are
found from the sets BSN(I), eaes 883(1). If for any k, hl lies interior
to bsk(l), the fi and fj are chosen to give a and b of opposite sign so
that the resulting input is zero. For the last two sampling periods
the gains fi and fj are to have zero slope, so that u(N-1) and u(N) are
given by Equations (5-47) and (5-48). The logic remains unchanged

throughout the regulation process.

Second order systems with integration. Equation (5-5) and (5-6)

describe second order systems with integration. Suppose that N~k
sampling periods have elapsed since the regulation was started at time
t = 0, and that the state of the plant has moved from c(0) to c(N-k).
A linear fuel optimum input over the next sampling period can be found
from Equation (5-7) as

u(N-k + 1)

- [r, hk] ey . (5-58)

u(k)

Defining the feedback as
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P
fk(cz) == q'z- cz ’ k = 3, 4, co ey N’ (5‘59)

gives the desired optimum input to the zero order hold as fk(cz) + e
Over the last two sampling periods, u(N-1) and u(N) are again given by
Equations (5-47) and (5-48), so that the last two gains are f2 =0,

f1 = 0. The linear fuel optimum controller configuration, shown in

Figure 74, is much simpler when the plant has integration.

Second order systems with tuned complex poles. Figure 52, page

131, shows the invariant vectors for a plant of the form

1
(s+a+ jb)(s + a - jb) ?

G,(s) = a>0 , (5-60)

when the tuning condition, Equation (5-9), is satisfied. If a > 0, see
Equation (5-14), all the input members are zero, except the last two.

In closed loop form, the controller feeds nothing back until t = (N-2)T.
The first component of the state in 'ﬁz -space is then fed directly into
the zero order hold. The controller configuration is very similar to
that shown in Figure 70, page 191, for the case A\ > 0. The optimum
controller for the case a € 0 is also directly comparable to the

corresponding case A £ O shown in Figure 70.

VII. CLOSED 1OOP CONTROL FOR MINIMUM

ENERGY WITH INPUT SATURATION

First Order Systems

The first order plant is given by

1
GP(S) = T . (5-61)
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It is assumed that the initial state, c(0), a scalar, lies in the set

[

N° S° that, from Equation (3-8),

N-1
e < Z JE (5-62)
5=0 '

where € = A\ T. Assume further that only k of the original N sampling
periods remain to complete the regulation and that the state of the
plant has moved from c(0) to c(N-k). The remaining members of the
linear open loop energy optimum input sequence are then given, from
Equation (3-3), as

k-1
Nk + 1+ 3) = eJX c(N-k) Z e21x, =0, 1, eee, k-1,

i=0
(5-63)
Now, from Equation (5-62), the state c(N~k) may be assumed to lie any-

where in the range

k-1 k-1
- Z 1% < c(N-k) < Z JY (5-64)
i=0 i=0

Assume, without loss of generality, that c(N-k) > 0, and consider how
ue(N-k.+ 1) varies as c(N-k) moves from the origin to its extreme positive

value. There are three possible cases: A >0, A =0and A0,

The case X\ > 0. Figure 26, page 70, shows that as the state

moves from the origin in the positive direction, there will come a point

where the last input, uo(N), is equal to the saturation limit, +1. From
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Equation (5-63) this point is given by
k-1
(k-1 :
c(N-k) = e (k-1)% Z eZIX . (5-65)
i=0
For future convenience, define
k-1
2k ¥
2i -
d(k - 1) = Z 218 e -1 (5-66)
2%
. e -1
i=0
Equation (3-10) says that if
e-k) 3 e DY gy (5-67)
then
e
a(N)=1 . (5-68)
As c(N-k) increases up to the point e.(k-l)X d(k - 1), uo(N-k-+ 1)
also increases, and, from Equation (5-63) with j = 0, reaches the
value
Nk + 1) = e EDY ) (5-69)

If c(N-k) passes the point where uo(N) = 1, Equation (5-68) gives

ue(N) = 1. Since only k sampling periods remain, the invariant vector
associated with u(N) is the k-th invariant vector, which has the length
e(k—l)“ . Therefore, in order to continue, Equation (5-63) must be

modified to

ejx [c(N-k) - e(k-l)\‘]

d(k - 2) =0, 1, eea, k-2.

POk + 1+ §) =
(5-70)

The next input to reach the saturation limit, as c(N-k) increases, is
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uO(N-l), at the point
ci-k) = DY L DY 5y (5-71)
and at this point,
-k + 1) = e KDY ] (5-72)
When
c@-i) » EDE L DY 4oy (5-73)
Equation (3-10) gives
M =@ =1 . (5-74)
This process is continued until
k-1
c(N-k) = Z el\‘ . (5-75)
i=0

In general let the values of c¢(N-k) at which the input members

ue(N), ue(N-l), eess ue(N-k + 2), ue(N—k + 1) first attain the saturation

limit be denoted ck(j), j=1,2, ..., ke Then ck(j) is given by,

e (1) = e
(5-76)
where d(0) = 1. When
c@-k) = ¢, (i), then u'(N-k + 1) = o~ Ge=Y (5-77)

1f ue(N-k + 1) is plotted as a function of c(N-k), a piecewise linear
curve results, Figure 75 gives an example of this plot for N = 3 and

k =3, 2, 1, for the case eX' = 2.

k-1 ¥ N e(k-zf{ o+ e(k-j+1)x + e-(k-j)X a(k - j
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The plots of ue(N—k.+ 1), as a function of c(N-k), k = N, N-1, ...,
1, are used as the time-varying gains in the closed controller. The
controlier operates upon the state c(0) in f; with the piecewise linear
gain for k = N and feeds ue(l) directly into the zero order hold. One
sampling period later, the gain for k = N-1 acts upon the state c(1),

giving ue(2), and so on until the regulation is complete.

The case A\ < 0. This corresponds to an unstable first order

plant. Since uo(l), as shown in Figure 70, page 191, is the first
input to saturate, the energy optimum solution is much simpler to

calculate than that for the previous case, A\ > 0. Suppose k of the

~original N sampling periods remain to complete the regulation. Equation

(3-3) gives

W~k + 1) = c(N-k)/d(k - 1) , (5-78)
so that if
1 - o 2kY
c(N-k) > d(k - 1) = — 5y R (5-79)
l -e
@k + 1) =1 . (5-80)

As k decreases from k = N to k = 1, the slope of uo(N-k + 1), as a
function of c(N-k), decreases to unity slope at k = 1. The initial
inputs, ue(l), ue(Z), «e. are therefore larger than the later inputs, as
opposed to the case A > 0. For A < 0, the state is trying to move
away from the origin, so the controller applies its main effort at

once, whereas for A > 0, the state is drifting toward the origin of its
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own accord, so the controller is rarely using its full effort. If c(0)
is such that, for A <0,

1
c(0) R » (5-81)
14 eK

Equation (4-15) shows that the plant is out of control, and no amplitude

constrained input sequence can bring the state back to the origin.

The case A = 0. This case has the solution, from Equation (5-63),

uC@-k + 1) = ®*N-k + 1) = c(N-K)/k . (5-82)
The implementation in closed loop form is then exactly the same as the
configurétions shown in Figure 70, page 191, for the case A =0,
Figure 70 shows how to implement the controller for the minimum fuel
input sequence, but when A = 0, the input sequences for minimum energy
and minimum fuel are identical. Note that the time-varying gain in
Figure 70, and Equation (5-42), is apparently different from that of
Equation (5-82), but, in this latter case, k takes on the values N,
N-1, ..., 1 sequentially, whereas in Equation (5-42), k increases from

0 to N-1.

Second Order Systems

The closed loop control for second order systems is considered
only for two cases: plants with tuned complex poles, and plants with

integration.

Plants with tuned complex poles. Suppose N-k sampling periods

have elapsed since the regulation process started, so that only k
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sampling periods remain to complete the task of bringing the state to
the origin. Equation (5-10) shows that the next input, u(N-k + 1),
depends only on the first component, cl(N-k), of the state c(N-k). Thus

k

cl(N-k) =u(N-k + 1) + j{: u(N-k + j)(_l)(j‘l)/ze(j-l)aT .

i=3
j odd

(5-78)
The closed loop control is obtained by comparison with the known
closed loop control of a first order system. Consider Equation (4-48),

which gives the deadbeat constraint for a plant of the form

GP(S) =<1 22 (5-79)
as,
K
c = u(l) + Z a(jeti-D2aT (5-80)
=2

The index j in Equation (5-80) runs from j = 2 up to j = k. In order
to make a direct comparison of the two deadbeat constraints of Equations
(5-78) and (5-80), let the upper limit in Equation (5-80) be m, where

k -2
2

m = . (5-81)

if k is even

k-1
]

if k is odd

The first order plant deadbeat constraint of Equation (5-80) becomes

m
c = u(l) + Z a(peli-D2aT (5-82)
=2
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Equation (5-82) corresponds to the deadbeat constraint of the plant of

Equation (5-79) when m sampling periods are allowed for the regulation.

* The points cm(j), j=1, 2, «.., m, for the closed loop graphical

solution of ue(l), are, from Equation (5-76),

c (3 = DY L @ DY @Y g (se83)
where Y = 2aT. When
c = cm(j), then ue(l) = e-(m-j)x . (5-84)

The differences between Equations (5-78) and (5-82), the different
notation and the alternating signs of the input members, do not prevent
Equations (5-83) and (5-84) from giving ue(N-k'+ 1) as a function of

¥ 2aT .
ci(N-k). For example, suppose e = e = 2, Figure 75, page 203,
shows the input sequence ue(N-k'+ 1) for the first order system of
Equation (5-79), when N = 3 and k = 3, 2, 1. These same plots may be

used for the second order plant with tuned complex poles, given by

Equations (5-8) and (5-9) as,

— 1 -
GP(S) = [ ) (5-85)

s+ a+ j %E] [s + a - j %E]

when N is either five or six. The closed loop controller, therefore,
uses the function corresponding to k = 3 for two sampling periods if
N = 6, or one sampling period if N = 5. This piecewise linear gain is
then changed to the function corresponding to k = 2 for the next two
sampling periods., Finally, the unit gain gives the last two inputs,

u®(5) and u®(6) if N = 6, or u®(4) and u®(5) if N = 5.
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The cases a = 0 and a € 0 may be solved in exactly the same
manner. The time-varying gains have the same form as the corresponding

first order system of Equation (5-79).

Plants with integration. The closed loop control of second order

plants of the form,

1

GP(S) = s(s—+T)- (5-86)
1
Gp(s) =3 (5-87)

s

can be derived by considering the sets Mk and rﬂ, k=N, N-1, ..., 2.
It will be shown that the implementation of the true optimum closed
loop controller would not be a practical proposition. However, the
consideration of the optimum controller leads directly to a practical

suboptimum controller.

A. True optimum closed loop control. The requirements for the

optimum closed loop controller will be considered for the plant l/sz.
The controller requirements for the plant of Equation (5-86) are quite

similar. Figure 76 shows the sets r; and Mj for the plant
1
G (s) = —2- . (5-88)
P s

The set M3 is shown as the dashed parallelogram. Because of symmetry,
only intital states with <y £ 0 need be considered. Suppose, with
N = 3, the initial state c(0) lies in M3. Then ue(l) = uo(l). If c(0)

lies such that uo(l) > 1, the conditions of Theorem 3 always being
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Figure 76. The sets [; and
obtain ue(l) in a closed loop manner.

for the plant 1/s2 showing how to
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satisfied,
u®(1) = sgn. Q1) =1 . (5-89)
In the cross-hatched region, u°(3) < -1, so that
u®(3) = sgn. v°@G) = -1 . (5-90)
Setting ue(3) = 1 gives the new deadbeat constraint as
c(0) - 23 = “(1).31 + u(2) 32 . (5-91)

Equation (5-91) gives ue(l) and ue(2) uniquely.

The closed loop procedure to obtain ue(l) for N = 3 is therefore
as follows. If the state lies in the cross-hatched region, ue(l) is
the horizontal distance of the state from the line ac shown in Figure
76. If the state does not lie in the qross-hatched region, it follows

that

(1) = sat., u°Q) , (5-92)
where uo(l) is obtained in the usual closed loop form, as a linear
vector géin operating on c(0). The vector gain is the first row of the

. t] -1
matrix |I + HH ] , where,

H= [23] . ~(5-93)

Graphically, uo(l) is the length of the projection of the state c(0)
onto the line ob, divided by the distance bd. The dashed arrows in
Figure 76 show the directions of projection, perpendicular to the line
ob. The line ob is simply the line uo(l) = 0,

Even for N = 3, the implementation of the closed loop controller

would be a difficult task, since the choice of feedback gain would depend
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on whether the state was in the cross-hatched region or not. It is
found, by a procedure similar to that for the case N = 3, that when
N = 4, the number of regions where the projection is different increases
from two to three. In each region a different feedback would be
necessary. The problem of implementation is not particularly that of
implementing the different feedback gains, but rather the difficulty of
deciding which gain is to be used. Figure 77 shows the sets M3, r;
and MZ for the plant llsz. The different slopes of the cross-hatchéd
differentiate the regions where the feedback strategy is differemt., The
lines onto which the state is projected are shown as the dashed lines
in Figure 77.

In general, for the plant of Equation (5-88), if the settling
time is to be N sampling periods, the state must be identified as lying

in one of N regions before the appropriate feedback can be selected,

This would be quite impractical to implement.

B. _Suboptimum closed loop control. Figures 76 and 77 show that

the regions in the sets r; and rﬁ, bounded respectively by the lines
u°(3) =+ 1 and u°(4) =+ 1, constitute the major portion of these sets.
This is also true of the plant of Equation (5-86). It is therefore
suggested that the feedback be given by Equation (5-92) for all initial
states.

This feedback is implemented by the controller configuration of
Figure 78. The time-varying gains, £(j), j =1, 2, ..., N, are the same

as those used in the linear minimum energy controller:
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[o]
u®() =1\/7(‘*) =1y,
uo(l) = -1
.;1
= -1

Figure 77. The regions in [ﬂ where the closed loop controller
requires different stategies for the plant 1/s”.
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fl(j + 1)
t e] 7t
£(3+1) = =I [CC ] » J=0,1, ¢¢cey Nen-1,
fz(j + 1)
(5-94)
where
C = [_{1, £2, eoey EN"j] s (5'95)
and
£() =e [r,, r r 1Y, 5=nNn N (5-96)
= = X1 I e L PR 3 eeay s
where e is the 1 x n row vector given by
E = {1’ 0, ssegy 0] - (5-97)

VIII. CLOSED LOOP CONTROL FOR MINIMUM

FUEL WITH INPUT SATURATION

First Order Systems

The open loop control of the first order minimum fuel system with
input saturation is discussed in Chapter IV. Figure 53, page 138,
illustrates a graphical method of obtaining the optimum input sequence.
The first order plant being given by,

1
6 (&) =5 o (5-98)

consider the three cases, A >0, A <0, and A = O.

The case \ > 0. Suppose (N-k)T seconds have elapsed since the

controller generated uf(l) from c(0) at time t = 0. In order that the

controller be able to take the state c(N-k) into the origin in the
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remaining kT seconds, c(N-k) must lie in f;; i.e., from Equation {4-8),

k
le-w)| < Z SI-DAT (5-99)
3=0

Assuming Equation (5-99) is satisfied, the closed loop control is given,
compare Figure 53, page 138, as follows. If

k
le-1)] < Z UDAT (5-100)
j=1

note the lower index, j = 1, on the summation, then
£
u(N-k+1) =0 . (5-101)

1f, assuming without loss of generality than c(N-k) > O,

k K
z e(J-DAT < e(N-k) < Z e(I-DAT (5-102)
=1 3=0
then,
k
ok + 1) = sat.[c(N-k) - Z e(j'l)xT] ) (5-103)
=

The case A\ € 0. 1In this case, the longest invariant vector is

hl’ so that, for all k, k = N, N-1, ..., 1, the closed loop comntrol is

given as,

L}

uf -k + 1) = sat. c(N-k) . (5-104)

The case A = 0. Since the invariant vectors in this case are all

of unit length, there are an infinite number of optimum input sequences,

and therefore controllers, which can give gf. The simplest closed loop

controller is the one which obeys Equation (5-104).
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The implementation cf the controllers. The implementation of

the controllers is very straightforward if X & 0. Equation (5-104)
implies that the state c(N-k), k = N, N-1, ..., 1, is fed directly into
a fixed saturation nonlinearity, with unit gain over its linear region.
The output of this nonlinearity is then fed directly into the sample-
hold device.

When X > O the controller can be imagined as a variable dead

zone, whose input is the plant state. The dead zone would be symmetrical,

and the amount of dead zone would depend on the amount of time remaining
for regulation. For example, when 0 £ t <T, the dead zome, 2(0), is

given by

G-DAT | (5-105)

)=

[ St
I
-t

N
- Z e(j_l)AT é Z(O) g
=1

In general, for (N-k + 1)T > t » (N-k)T, the dead zone, z(N-k), 1is

given by
k k
- ZE: U DAT sy < j{: c(I-DAT (5-106)
j=1 j=1

Figure 79 shows the controller configuration for the cases A> 0

and A £ 0.

Second Ocvder Systems

Second order systems with tuned complex poles. This case has

already been discussed in Chapter IV. The controller configurations




)
1..
Zero
- Order -——/ 5 .1 PO S ——
uf(t) Hold T c(N-k)
plant
state
$+-1
z(k)
time-varying deadzone
a. The case A >0
(]
Zero
- Order fo— —
uf (e Hold T c(N-k)
(t)
plant
state
b. The case A £0
Figure 79. The optimum closed loop controller configurations for
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first order systems with minimum fuel consumption.
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are exactly the same as those shown in Figure 79. 1In the case of a plant
corresponding to A > 0, each dead zone is retained for two sampling
periods, except perhaps at the start of the regulation, when, if N is
odd, the first dead zone, z(0), is changed after only one sampling
period. Figure 66, page 169, gives an example of the dead zone non-
linearity when the settling time is given as either five or six sampling

periods.

Second order systems with integration. For plants of the form
of Equations (5-86) and (5-87), the closed loop control is obtained by
generalizing Equation (4-37). If the state c(N-k) is in the set Qk’

k = N, N'l, ecey 2,

Nk +1) =0. (5-107)

If c(N-k) is in l:, but not in Qk’ then

af -k + 1) = sat. y (5-108)
where p is the smallest number in absolute value such that c(N-k) - p 21
lies on Qk' The sets Qk are not unique for plants with integration,
however, the simplest controller configuration is obtained when Qk is
constructed as follows. 1In 6 -space, let the set Qk’ for cz(N-k) 20,

be the line joining the set of points:

k-2
b..k’ .llk + .l_lk_ls .tlk + b‘k-Z' L Z _‘}k_j . (5-1()9)
j=0

For cz(N-k) £ 0, the set Qk is defined by symmetry. Figure 64, page

2
165, for example, shows the sets Q4 and Q, for the plant 1/s”. The
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closed loop controller therefore requires the use of time-varying piece-
wise linear gains., Figure 80 shows the actual configuration of the
optimum controller., Over the last two sampling periods the gain remains
fixed corresponding to the set Q2, so that the saturation nonlinearity

only receives the €1 component of the plant state.

General second order systems. If the sequence of sets, QN’

QN-l’ ooy Q2 can be found, see Chapter IV, page 161, the optimum closed
loop controller in general would need to use two time-varying piecewise

linear gains in the configuration of Figure 73, page 197. The same logic

would also be necessary and would be followed by a saturation nonlinearity.
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CHAPTER VI

SUMMARY AND CONCLUSIONS

One common approach to the problem of designing control systems
uses the analog computer to simulate the plant. By a process of intuition
and experiment a controller may be designed which meets certain general
specifications on the performance of the overall system. While this
approach is frequently quite successful, it basically tailors the con-
troller to suit existing hardware and techniques of analysis. Consequently,
when the controller has been constructed and evaluated, there is often
no clear indication as to how it might be further improved. While the
results of theoretical analyses, with their accompanying simplifications
and somewhat arbitrary performance criteria, may not be directly applicable
to real systems, in some cases sufficiently realistic cost functions can
be mathematically formulated and the theoretically optimum input sequence
defined. Any optimum controller which results from the theoretical
analysis may then be judged by balancing such factors as cost and reli-
ability against the economic advantages of attaining an optimum system.

The discrete regulator is assuming an important role with the
increasing tendency of modern systems to use digital techniques. The
discrete deadbeat regulator, designed to minimize the energy and fuel
cost functions, has taken on a new practical significance with the
sophisticated requirements for the guidance and control of space vehicles.
Although the problem of finding the optimum bounded input sequence which
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minimizes these two cost functions can be formally solved by using non-
linear and linear programming techniques, such methods are intrinsically
unable to suggest either improvements to existing control systems, or
novel and simpler hardware to implement the optimum sequence. It has
therefore been the aim of this research to make an investigation of the
characteristics of the optimum input sequence, so that the controller
could be designed around the input sequence, rather than the sequence

around the controller.

I. SUMMARY OF THE APPROACHES USED

AND THE RESULTS OBTAINED

When the plant is driven by the output of a zero order hold, its
equation of motion can be conveniently described by a first order vector
difference equation. In order to avoid having to choose a particular
state space in which to represent the plant and its state, an alternate
space, the canonical vector space ( fa -space) has been defined.
Formulating the discrete deadbeat regulation in 12 -space, via the
invariant vectors, has the advantage that the properties of the input
sequence need only be considered with reference to the poles of the
plant transfer function.

The linear minimum energy and minimum fuel problems were discussed
in Chapter II, and the corresponding cases with input saturation in
Chapters III and IV respectively. Chapter V was mainly concerned with

the implementation of the optimum control in closed loop form.
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Summary of the Minimum Energy Problem

The linear minimum energy input sequence was found, for the
general n-th order plant, by using only elementary differential calculus.
The generalized energy cost function, which, by a suitable choice of the
N x N matrix S, gives deadbeat control and allows the system response
to be adjusted to meet various time domain specifications, was obtained
by a simple extension of the ordinary energy cost function. The minimum
energy control sequence for second order systems was also found by
graphical techniques, using a geometrical interpretation of the optimum
sequence. The open loop generation of the control requires the inversion
of an n X n matrix. The closed loop implementation uses linear time
varying feedback gains in the controller configuration of Figure 68,
page 183.

When the saturation constraint is included, the problem of finding
the optimum control is considerably more complicated. However, if the
initial state, c, lies in the set MN’ the linear energy equations
furnish a solution, E?’ which satisfies the saturation constraint. The
set M& may be obtained graphically if the order of the plant is not
greater than two. If ¢ is not in MN, but is in the set r;, it has been
shown that the solution to the minimum energy regulator with input
saturation amounts to finding which members of the input sequence are
equal to the saturation limit. If only one member of E? exceeds the
saturation limit, then Theorem 2, page 103, guarantees that the corre-

sponding member of Eé is equal to the limit. If more than one member
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o
of u

exceeds the saturation limit, Theorem 3, page 120, can be used to
find which of these are to be set equal to the saturation limit. Theorem
3 has two conditions which must be satisfied before a particular member
may be set equal to the limit. However, the second condition, Equations
(3-106) and (3-107), is, in general, quite difficult to test. It was
therefore suggested that a practical open loop method for finding the
constrained optimum sequence would be to use Postulate la, page 114,

as the basis of a step by step procedure. This procedure first requires
the calculation of the linear sequence_go. If any members of Eo exceed
the saturation limit, Postulate la, or Theorem 2 if applicable, is
applied to find which of these members are to be set equal to the
saturation limit. Having set these members at their appropriate limits,
a new deadbeat constraint results, for which a new linear optimum
sequence, containing correspondingly fewer members, is calculated.
Postulate la is then applied again if necessary. Eventually, one of

two possibilities will occur. A linear optimum solution may be obtained
each of whose members satisfies the saturation constraint. 1In this

case the problem has been solved. It is possible, however, that with

no more than n invariant vectors remaining to represent the latest state,
there is no constrained input sequence which satisfies the corresponding
deadbeat constraint. The step by step procedure has therefore erroneously
set one or more of the input members at the saturation limit. It has
been shown that, in general, the technique can guarantee an optimum

solution only for first order systems, or for second order systems
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having either tuned complex poles or integration, where, if any members
of the linear sequence exceed the saturation limit, they are all to be
set equal to the saturation limit.

The closed loop implementation was shown to require the use of
a piecewise linear time-varying gain feeding a saturation nonlinearity,
when the plant is of the first order, or of the second order with tuned
complex poles. Second order systems with integration were shown to
require a very complex closed loop controller. A relatively simple
suboptimum controller, using only the time-varying linear gains of
the linear minimum energy feedback to feed the saturation nonlinearity,

was suggested and is shown in Figure 78, page 213.

Summary of the Minimum Fuel Problem

The linear minimum fuel problem is approached by considering the
initial state in relation to the set SN(f). For the general n-th order
plant, this set is used to divide the state space into a finite number
of cones. Once the state has been identified as belonging to a
particular cone, the optimum sequence is easily obtained (22). The
considerations involved in finding a suitable cone which contains the
initial state are, in general, very involved, and have precluded in-
vestigation of any system higher than second order. First and second
order systems were considered in detail, Theorem 1, page 44, gives the
necessary and sufficient conditions for the uniqueness of the fuel
optimum input sequence, and was utilized to investigate what combinations

of plant poles and initial state give a nonunique optimum control. Open
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loop solutions for first order plants or second order plants with either
integration or tuned complex poles are particularly simple. Other
second order plants require only that the set SN(f) be constructed.

The hardware required for the closed loop control of the linear minimum
fuel regulator varies in complexity. For first order systems it may

be only simple direct feedback, see Figure 70, page 191, while a general
second order system requires a pair of linear time-varying gains
providing inputs to a small logic unit. Figure 73, page 197, shows the
configuration of this controller.

Open loop solutions to the minimum fuel problem with input
saturation were obtained for first order systems and second order
systems with tuned complex poles. It was shown that, in general, the
closed loop approach is more appropriate for dealing with the saturation
problem. The method suggested involves the generation of the sets Qk’

k = N, N-1, ..., 3, and these sets were obtained for second order systems
with integration. More general second order systems were not investi-

gated beyond the case N = 4. The closed loop controllers developed for
first order systems are shown in Figure 79, page 217. Second order

systems with integration were shown to require the use of a piecewise linear
time-varying gain, followed by a saturation nonlinearity. Figure 80,

page 220, shows the configuration. If the appropriate sets Qk can be

found, more general second order systems would incorporate two such

gains followed by the logic unit and the saturation nonlinearity.
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II. CONCLUSIONS AND SUGGESTIONS

FOR FURTHER RESEARCH

It has been shown that for first order systems and a somewhat
restricted class of second order systems, practically feasible optimum
closed loop controllers can be obtained, which could not have been
obtained by using classical techniques. It was shown that if the poles
of a second order underdamped plant can be tuned, by adjusting either
the poles or the sampling period, the construction of energy and fuel
optimum controllers is considerably simplified. The time-varying gain
so frequently necessary would, in some cases, be a fairly costly item
to produce, especially if N is large. It would therefore be of con-
siderable value to be able to find one suboptimum time-invariant gain
which could be used as a substitute. Since the closed loop feedback
for deadbeat control is always constant over the last n sampling periods,
the resulting linear region of control around the origin will prevent
the possibility of limit-cycling, even if the plant is subject to large
disturbances during the regulation process. Closed loop control for
unstable plants is much simpler than that for stable plants, since the

invariant vector h, is always the longest.

1
On a theoretical note, the approaches used are of some interest
in themselves.
The partitioning of the input sequence allowed the linear minimum
energy solution to be derived in a simple manner, and, by enabling the

case n = 2 and N = 4 to be studied in detail, provided a very useful

method of studying the various facets of the saturation problem.
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The extension to third and higher order systems presents for-
midable problems. Open loop procedures seem to offer more promise for
the minimum energy problem, while closed loop methods, with the obvious
exception of linear programming, seen more appropriate for the minimum
fuel problem. The simplifications obtained when the plant has integra-
tion may continue when the higher order system has integration.
Similarly, the possgibility of tuning two or more pairs of complex poles
exists.

Time-varying plants offer no additional theoretical obstacles:
The minimum fuel and energy problems are mathematically unchanged, so

that the same techniques are applicable.
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APPENDIX A
SAMPLED-DATA SYSTEMS AND THE INVARIANT VECTORS
I. INTRODUCTION

The Appendix begins with a discussion of the plant and its
response to pulse-amplitude-modulated control signals, following which
the discrete deadbeat regulator problem is formulated in terms of the
canonical vectors. Whether or not there is a solution to the problem
depends on the controllability of the plant, and the necessary conditions
for the existence of a solution in terms of the controllability of
the plant are given. When considering control sequences that are
limited in amplitude, additional information is needed. The informa-
tion is considered in terms of the set I—;.

The regulator problem can be clarified and its solution
simplified if the formulation with the canonical vectors is replaced
by a formulation using the invariant vectors. These vectors are
introduced and tabulated for first and second order plants. Finally
the regulator problem is reformulated with these invariant vectors,
the problem being considered in the canonical space rather than the

state space.
II. THE PLANT

The n-th order linear plant is described by the matrix

differential equation,
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x(t) = A x(t) +d u(t) . (a-1)
The plant output c(t) shown in Figure 3, page 5, is a linear com-
bination of the state variables. The solution of this differential

equation is

x(t) = 6(c - t) x(t ) + G(t - T)du(T)dT , t>t_.

L—
"

(A-2)
In general, for the time invariant plant, to may be taken to be zero.
The transition matrix, G(t), may be found by several methods. One

convenient formula is,

ety = L.t [[sI - A]'l] , (a-3)
where I is the n x n identity matrix and ‘Ig-l denotes the inverse
Laplace transformation,

Consider the case when the plant is subjected to pulse-amplitude-

modulated inputs (8, 9, 10). Suppose

u(t) = u(l) = constant, 0 £t <T. (A-4)
Then
x(t) = 6(t) x(0) + u(l) h(t) , (A-5)
where
t t
h(t) = f G(t -T)Hd AT = f c( tHddtT' . (A-6)
o o

After T seconds the solution is

x(T) = 6(T) x(0) + u(l) h(T) . -7
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After (k + 1)1 seconds the solution is
x(k + 1T) = G(T) x(kT) + u(k + 1) h(T) , (A-3)

where u(k + 1) is a constant input over kT € t < (k + 1)T as shown in
Figure 1, page 2. Some useful properties of G(t) and h(t) are given

below. Letting t., and t, be arbitrary real numbers and k be an

1 2
integer,
G(O) =1 > (A-g)
h(0) =0 , (A-10)
n = ~11Y
u(tl + t2) G(tl)G(tz) , {(A-11)
-1
G (t) =6t (A-12)
-k
G (t) = 6(-kt)) , (A-13)
and
p_(t1 + tZ) = G(tl)_l'_l(tz} + g(tl) . {A-14)

Beginning with the initial state x(0) and using Equatioa (A-8)

repeatedly gives

!

o~~~

ot

St
|

= 6(Dx(0) + u(L)A(D) (a-15)

byl
~

N
~r

I

G(Tx(1) + u(2h(1) ,

62D x(0) + u(L)G(TIA(T) + u()h(T) (a-16)
where x(k) = x{kT) for notational convenience. Finally,
N

20 = GODE() + ) u(NEE - IDAMD - (4-17)

|

Jj=4

Equation (A-17) gives the solution to Equation (A-1) when the input is
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of the form of Figure 1, page 2. The solution at instants of time
other than t = kT, k = 1, 2, ... can be found (5, 6), but such consid-

erations will not be needed.

III. THE DEADBEAT REGULATOR

The deadbeat regulator requires that x(N) = 0. The condition
for x(N) = 0 can be obtained by premultiplying Equation (A-17) by
G(-NT). Then with the use of Equations (A-9), (A-11) and (A-13), there
results

N

20) = ) -6C-IDADu) (a-18)
=1

The canonical vectors Ej’ j=1, 2, ..., are defined as (7)

;= -G(-iDh(T) . (A-19)

With the use of Equation (A-14),

;= h(-iD)-h(-G - DT . (A-20)

From Equation (A—iS) a necessary and sufficient condition (1,
23, 25) that the state of the plant can be brought to the origin in N
sampling periods by the input sequence u(l), u(2), ..., u(N), is that
the initial state x(0) be given by

N
0= ) udx - (a-21)
=1 ‘

Equation (A-21) is fundamental to the deadbeat regulator problem.
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Controllability

Pulse-amplitude-modulated plants described by the difference
equation, Equation (A-8), are defined to be completely controllable if
and only if the set of vectors Iys Iys -5 L are linearly independent.

Complete controllability is a necessary condition for there to
be a solution to the deadbeat regulator problem. For the linear case,
when there is no saturation constraint on the input sequence, complete
controllability is also a sufficient condition. If any n of the set
of canonical vectors Ej’ j=1,2, ..., N are linearly independent,
they can be used as a basis for the state space. It then follows from
Equation (A-21) that for any initial state x(0) there is an input
sequence u(l), ..., u(N) which makes x(N) = 0. In the continuous case
the plant described by Equation (A~1) is completely controllable if
and only if the vectors d, Ad, ..., An-¥g are linearly independent (1).
Usually the introduction of the sample-hold device between the input
and the plant leaves the discrete plant of Equation (A-8) completely
controllable. If the plant has complex poles however, it is possible
for the continuous plant to be completely controllable and for the
discrete plant not to be completely controllable. It has been shown
(1, 2) that the discrete plant remains completely controllable if and

only if, for every eigenvalue A. of A,
) 2
whenever Re. Ai = Re. A‘j , then TIm. [Al - Aj]# %k .

(A-22)

where k is a positive integer. For example, if only one pair of complex
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poles occurs in the continuous system, so that )& 1~ 2 + jb, A~2 =
a - jb are the only complex eigenvalues of A, the plant remains
completely controllable if and only if
bT # knt . (A-23)

For second order systems this can be illustrated geometrically. From

Equation (A-20),

[a}
]

=1 E(-T) 9

la]
[

I = h(-2D) - h(-D) . | (a-24)

Figure 81 shows h(-t) plotted for a typical second order system with

complex poles. The figure illustrates that if T = xn/b, r, and r, are

1

not linearly independent. It can be shown further that, in fact, all

2

the canonical vectors lie in the same direction.

The Set r;

Consider the set of all initial states that can be taken into
the origin in one sampling period. This set is found by setting
x(1) = 0 in Equation (A-15), which gives

x(0) = r, u(l) . (A-25)

If u(l) is unrestricted, all the states on the line u(1)£1 can be

brought into the origin in one sampling period. If lu(l) < 1, only

states lying along the vector r, or -r. can be brought into the origin

1 1

in one sampling period. Similarly the set of all states that can be
taken to the origin in two sampling periods or less, is the set of all

states that can be taken to the state u(2)£1 in one sampling period.
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Figure 8l. Loss of controllability is possible with sampling.
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In general, the set of all states x(0) that can be taken into the origin

Py

in N sampling periods or less, with lu(j)I £1l, =1, 2, ..., N, is

given by the set r;]:

N
FN = | (0 IE(O) = Z u(zry s l“(j)‘ <1, j=1,2, eee, N
j=1

(A-26)

Figure 82 shows the method of generating the set I—; for a second order
system.

The following properties of I_‘N can be shown (14, 23, 24, 25):

1. FN is a convex set and contains the origin as an interior

point.
2, r;] is symmetric with respect to the origin.
3. r; is a proper subset of r; for j > i.

4, For T >0,

a. Lim, r:q = x if and only if Re.[.li]go, i=1,
N-—.oo

2, eeey N.

b. Lim. r
N 0 N

x if and only if L&:I £1,i=1,

2, eeey D,

Here Al’ A 23 e A p are the eigenvalues of A (the poles of the

* * *
continuous plant), A 1° A_ 23 tees A  are the eigenvalues of G(T) and

the system, continuous and discrete, is completely controllable.
If an initial state x(0) is in the set r;{ then the state may

be taken to the origin in N sampling periods or less with an amplitude
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‘ XZ ‘ X2
3 [I] 2 [)C]
5 < i
0 Xl 0 Xl
=
a. The canonical vectors c. The set r;
X, [
by
\ <,
K
b. The set r1 d. The set r;

Figure 82, The generation of r;, r;,and r; in :{:-space.
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limited input sequence. Conversely, if for a given N, x(0) is not
r; there is no solution to the (deadbeat regulator) problem of
making x(N) = O.

The Invariant Vectors

The canonical vectors Ej are dependent on the coordinate system
of the state space; i.e., they depend on the particular choice of the

state variables x cees X o Since the state of the plant must be

1’
referred to some coordinate system, the regulator problem would seem
to depend on the choice of state variables. On the other hand, the

optimal input sequence must remain the same no matter what coordinate
system is chosen to represent the state of the plant. If the initial

state is described not by the canonical vectors, but by the invariant

vectors discussed below, the regulator problem formulation becomes

independent of the choice of state variables, Let the n x n nonsingular

matrix R be defined as
R = [El’ £2’ ey _En] ’ (A-27)

and define the invariant vectors.hj, jJ=1ly, 2, eee, as

h, =R r., . (A-28)

It will be shown that the invariant vectors h

250

dependent only on the poles of the plant; i.e., the characteristic

ji=1, 2, ..., are

equation of the matrix A. It will, therefore, follow immediately that:
1. The invariant vectors are independent of the coordinate

system of the state space.
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2. The imvariant vectors are independent of the zeroes of the
transfer function.
It is now demonstrated that the invariant vectors are dependent only
on the poles of the plant.
Consider a plant with distinct poles,

S='Ai:i=1s 2y, «..y D,

and represented by the transfer function,

m

-!_]— (s + zi)

3223 = 1;1 ,m<n . (A-29)
TT €+ A
i=

Since the poles are distinct, the transfer function can be expanded

into partial fractions giving,

n n
C(s) = Z Xi(s) = Z di/(s +Ai) u(s) , (A-30)
i=1 i=1
with
di
Xi(s) = g‘:—x‘: U(s) . (A-31)

For a completely controllable plant, d; $#0,i=1, 2, ..., n.

Choosing x, as state variables, leads to the state equation,

x(t) = A x(t) + d u(t) , (A-32)
where

A = diag.(~ ,\1, - /\2, veey - )Ln) s (a-33)

d = col.(dl, dys eees dn) . (A-34)
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From Equation {(A~3) and Equation (A-6),
- 7\1T = AT =AT
G(T) = diag. | e e ) eee, € ]. (a-35)
d - A,T d - T
1 1 n n
h(T) = col.[—-—— 1-e 1-e ] (A-36)
- )\1 ( )’ >\n ( )
Let
d, - AT
_ i i _ .
kl—-7\i<l-e ), Y, = AT, i=1,2, .c.pn .
(A-37)
Therefore
P_(T) = COl.('kl, -kz, LR X Y -kn) 9 (A-38)
G(T) = diag. [e 1, e 2, ceey e n ] e (A-39)
The canonical vectors given by Equation (A-19) are
£J = ‘G('jT) E(T)’ i=1, 2, ..., (A‘40)
B 3 i
= col.[kle 1, kze 2, ceey k € n ] . (A-41)
Then the matrix R is given by
R, 2% ny, |
1 1 1
kle kle e o o o o kle
X2 ZXZ nKZ
kze kze « o o o @ kze
R = - . . . (A-ll'z)
2% n ¥
k eYn ke ° e s o e o ke ©°
| n n n
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Let rij be the i, j-th element of R 1, and Rij the cofactor of the
i, j~th element of R;
* Ri'
r]._j = TE% R (A-43)
[ ¥, (i-1) ¥, (H#DY n¥, |
e e o s @ e P -
X . (i-1)¥ ._ (i+1)Y . _ ny._
¥ (i-1)Y G+ ¥ . ny
e J+1. . e +i e J+1.. . e i+l
¥, (-1 (H#1 X ny,
i+j |e e b e « o o €
_ep™i v ]
Tk, - -
i X]_ :1X1
e . . . . . L L L ] * L] e
¥n ¥,
e . L4 L] L * . L d L - * e
(A-44)

t h , be the i-th ¢ onent of h and r , be the j-th component of
Le pi e e i omp n b, 3 j P
gp. From Equation (A-28),

n

:' *
h ., = r,. r . 0 (A'45)
p1 1] PJ

j=1
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Let the n x n matrix V be given by
R} nY]
e L] L] . - L - e
V - . . Y (A-46)
nY
exn * * - Ll L - e n

then if Vij is the cofactor of the i, j-th element of V, Equation (A-45)

gives
pY¥
1 - Vi ke . 1 v PY
h . W= }: = V.. . A-47
pi V| ks TvI Th (a-47)
j=1 j=1
From Equation (A-47), for j=1, 2, ...,
- - F iy T
Yl 2X1 nxl -1 3%
e e « e . € e
e e .. . € e
h- = . . . L) . (A-48)
—.J o - L ]
¥n 2Xn nxn J Xn
e e - i e

Equation (A-48) is a general formula for obtaining the invariant
vectors. It shows that Bj is dependent only on Xl, caey ‘Kﬁ’ which
in turn depend only on the poles of the plant and the sampling ‘period.
The matrix V in Equation (A-48) is closely related to the Vandermonde

matrix (5). If the plant has repeated roots, V has rows which are
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equal and the inverse of V does not exist. This is simply because the
partial fraction expansion of the plant of Equation (A-30) does not
exist if the poles are not distinct. However, the invariant vectors
can be obtained for repeated roots from Equation (A-48) by first
inverting the matrix, thus forming the expression for_hj, and then
taking the limit as the poles move to the same point. An example of
this procedure can be seen in the following paragraphs.

For reference purposes the invariant vectors are calculated for

first and second order systems.

First order systems. From Equation (A-48) with ¥= AT,

b, = RE L) S R T . (a-49)

Second order systems. From Equation (A-48),

G-DY+%  (G-DY+Y,
e e

h, = ————— - (A-50)
1 % ¥ G-DY¥, G-DY,
e .-

For notational convenience define

G-D¥, G-DY,
[

- €
w = ’ j = 1 2 oo . A"Sl
e - e

By long division there results,

j . .
Z (3-1)% ,+i ¥, .
WJ.+2 = e ’ J = 1, 2’ LN ’ (A-SZ)

with w, = 0, w, = 1, Using Equation (A-52), Equation (A-50) gives
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¥,
e w..ﬂ_1
Ej+2 = s =1, 25 ceo, (A-53)
and
1 0
31 = s EQ = . (A-54)
0 1
Table I shows the invariant vectors for various second order
systems.

In the general n~-th order plant, it can be seen from Equation
(A-48) that the first n invariant vectors are always unit vectors:

h, = col.( 53’1’ cees Sjj, cees gjn) . (A-55)

It is this fact that is so useful when the minimum energy and minimum

fuel sequences are calculated.

The Canonical Space

A fundamental equation in the deadbeat regulator is Equation
(A"ZI-) s

N

x(0) = Z u(d ;- (A-56)

i=1
The initial state x(0) in :I:, can be bought to the origin, if and
only if it can be represented by Equation (A-56) for some N. If

Equation (A-56) is premultiplied by R-l,
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N
-1 _ .
R x(0) = Z u(j) EJ. : (A-57)
j=1
Let
-1
c=R"x(0) . (A-58)

Reserving the symbol :):; for the original state space of the plant with
coordinates Xys X9y eeey X, it is convenient to call R-l :X: the
canonical vector space or just ff -space. For any state x in tx: s
there is a corresponding c¢ in f? given by Equation (A-58). Let Cys sees
c, be the coordinates of ff -space. Then Equation (A-56) in ff -space
is

N

c= Z u(j) hj . (A-59)
i=1

Considering E_ixl'éz as the state of the plant, the representation of
Equation (A-59) is independent of the choice of the state variables,
and the properties of the minimum energy and fuel input sequences can
be described without reference to any coordinate system since they
depend only on the p&les of the plant. The matrix R contains all the
information on the state space and the zeros of the plant. The
formulation of Equation (A-59) is fortunate for another reason: the
derivation of the optimal input sequences with this formulation is much
simpler compared with the calculations that would be needed if Equation
(A-56) were used. This results from the fact that the first n

invariant vectors form the columns of the n x n identity matrix (see

Chapter II).
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As an example of the relation between I -space and C -
space, the set [_'N in C -space is
N
lh=lele= ) wm, 5 [s| €1, 5=1,2 0y
=1

(A-60)

Figure 83 shows r for a second order system in both I and C .

3
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APPENDIX B
DERIVATION OF EQUATION (3-87) AND THE PROOF OF THEOREM 3

I. THE POINT OF TANGENCY BETWEEN

A HYPERELLIPSOID AND A HYPERPLANE

Let the equation of the hyperellipsoid, Equation (3-51), be

" [1+ HtH]§=AE , (B-1)
and let the hyperplane be given by

2=z , (8-2)
where the (N-n) x n matrix H is given in Equation (2-17) as

H = [l‘m-v B oy oeee _I;N] . (8-3)

The matrix Z is assumed to be an r x (N-n) matrix of maximal rank r,

r < (N-n), and z an r x 1 constant vector., Let the (N-n) x (N-n) matrix

Y be defined as

Y = [I + HtH] . (8-4)
The point of tangency between the hyperellipsoid of Equation (B-1) and
the (N-n-r)-dimensional hyperplane of Equation (B-2) is the B which
minimizes

QtY B subject to z° B=z . (B-5)
Since Y is a positive definite matrix, the solution to this problem is
given by Equation (2-45) with Eo replaced by B, S replaced by Y, C
replaced by Z and x(0) replaced by z. Therefore, the point of tangency

256
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is given by

p=v?!zt [ZY'l zt]-l z . (8-6)

Suppose r = 1, and Z is given by one of the following N possibilities:

Z=2Z2 =-p., j=1, 2, ..., n, B-7)
or, for j = n+l, m#+2, ..., N,

z=1z, = [Sm_lj, szj, ...,SNJ.] (8-8)
where Rj is the j-th row of H, as defined in Equation (3-56) and Sij
is the Kronecker delta. If the 1 x (N-n) matrix Zj’ given by Equations
(B-7) and (B-8), is substituted into Equation (B-2), and z is replaced
by S(j), the resulting (N-n-1)-dimensional hyperplane

Z, B = Escj) (3-9)

corresponds to the hyperplane Wj if g(j) = -uo(j) + 1, and to the
hyperplane w_J. if (» = -uo(j) - 1. In this case Equation (B-6)

becomes, on replacing B by éj’

Y1zt
B: = —--—'Le g(j) . (8-10)
bz vl

gy
g .= , (B-11)

where, from Equation (3-54), _qj = -H Qj. Therefore, Equations (B-10)

and (B-11l) give the N-vector éj' The last N - n members, Ej’ come
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from Equation (B-10) and the first n members from Qﬁ = 'H.éj:
-y !t
J
5, - 1 80
0, = —3 3 - (8-12)
Z.Y Z, -1 .t
3 J Y " Z,
s ]
II. DERIVATION OF EQUATION (3-87)
Equation (3-87) is
g (i) = g(J) (8-13)
where gj(i) is the i-th member of gj’ i,j=1, 2, ..., N, and
O,. .
Tij =u (l’ EJ.) ’ i’J = 1’ 2’ evey N, (B-lll')

. . : P . o
is the i-th member of the linear minimum energy input sequence, u , for

an initial state ¢ = h..

Matrix Identities

Let the n x n matrix X be defined as

x=[1+m{t] .

(B-15)

Equations (2-25), (2-27), (2-28) and (2-29) are respectively,

o
[}
=+

“

o
]
=]
»
o

.

|o
]
<
sl
o

(B-16)
(8-17)
(B-18)

(8-19)



where

o
a2

le
]

bO
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(8-20)

is the linear minimum energy input sequence corresponding to the initial

state c. From Equations (B-18) and (8-19),

Let I denote the identity matrix. Then

yly=1=v" [I+ HtH] =y l+vylaty ,

xl-1-= [I + HHt]x°1 =xteymtx?t .

Postmultiplying and premultiplying Equation (B-21) by H gives

mtxlt=nylat .

Therefore, Equation (B-22) with Equation (B-24) gives

1=vl+atxla ,

and Equation (B-23) with Equation (B-25) gives

1=xtiuvylat .

t

Evaluation of -H Y-l Zj’ i=1, 2, <o, N

From Equation (B-7),
t t t t t t t
[Zl, ZZ’ eoey Zn] = = [Rl’ 22’ LR Y ETI] = -H o

Therefore, Equation (B-27) gives

(8-21)

(8-22)

(B-23)

(B-24)

(8-25)

(8-26)

(8-27)

(B-28)



gyl [zi, zg, ee, z[tl] =1-x1 .

Now from Equation (B-8),

-H Y'l[ Z:t1+1’ cees le] =ayl: ,

so that the transpose of Equation (B-21) gives

-1f,t t -1
“-HY [Zn—'_l, seey Z.N] = =X H .

Therefore, Equations (B-29) and (B-31) give
- t t - -
-HYl[zl, ,zN] = [1-x1, -xln] .
Equation (B-17) gives, with ¢ = Ej’ j =1, 2, eee, N,

o -1
a (h,) =X h., .
- (‘J) =]

t
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(B-29)

(8-30)

(8-31)

(8-32)

(8-33)

Therefore, the i, j-th element of -H Y-1 [Zl, somy Z;] s 1 =1, 2, eue,

i=1, 2, ..., N, which is the i-th member of -H vl z'Jf, is

o,.
Sij - u (i, Ej) .

Evaluation of Y-l ZE, i=1,2, ..., N

e ezt ] - [ 1]

(B-34)

(8-35)

where I is the (N-n) x (N-n) identity matrix. Using Equation (B-21)

gives
- t _-1 -1
C ] - [
Equation (B-26) gives

yl-=1-8"x'u,

(B-36)

(3-37)
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so that, using Equations (3-16) and (B-33),
-1 t t
Y [Zl, XN WY ZN]

= [‘2?(21), cees ‘E?(hn), I- [§°(§n+l),...,‘§?(gnﬂ] . (8-38)

Therefore, the i-th element of Y-1 Z;’ i=1, 2, «e., N-n, is

Stﬂd_j =+ i, h) . (8-39)

The matrix of Equation (B-12) is therefore,

vyt ozt
i
1 1 [ o
— = = —1—= [ - @] o
z, v'!zt 1 z, vyt gt L7 3
j j vl j j

whereAgj = col. [551, cens Sjj’ ooy SjN]" It therefore remains to

evaluate Zj Y-l Zg. From Equations (B-29) and (B-28),

Zy
Zy
- - -1 t t t
1-X 1_ Y 1 Ht = . Y [Zl’ ZZ’ cees Zn ] , (B-41)
z
e n—
| -1t -1 .t ]
2, Y z{ .. .2, Y 2
= - - . (3-42
z vizt ...z vlazt
n 1 n n |

Therefore, from Equations (B-33) and (B-35),
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o=l _t . .
2,¥ 7 25=1-9G, h) s 3=1, 2, ey n. (B-43)
Equation (E-38) gives
~1 _t o,. X
2;Y 2;=1-uw(i, by, §=ml, oo, N (B-44)
Finally therefore, Equations (B-40), (B-43) and (B-44) give
Ey! z;' .
e. -~ uv (h.)
1 —_ . -_— e
3z = — S L . (B-45)
Z. Y z. -1 1 - u (j’ P_.)
j i vz, j

Therefore, with Equation (B-14), there results from Equations (B-12)

and (B-45),
$. . -1,
Sj(i) - A g(j) , (8-46)
1]

which is the desired form of Equation (B-13).

Useful Properties of Tij

Since [I + HHt]-1 is a positive definite symmetric matrix, a
matrix D can be found such that

D= [I + HHt]-l ) (B-47)

Define the n-vector Ej as

Ej = Dhj, j = 1’ 2, “eey N . (3‘48)
Then
t t _t
n; Rj = Ei D D.Ej ’ (8-49)

" which from Equation (B-16) gives
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t  _ .
2 my =Ty - (8-50)

Consider an initial state ¢ = _tlj. One possible input sequence which
brings ¢ te the origin is u{j) = ~1, u(i) = 0, i # j. This input
sequence has an energy E = 1. The minimum energy consumption is, from

Equation (2-39),

[s] t _t
E =h.D Dh, =n.n, =T,, 3-51
23 23785857 5 0 (3-51)
but 0 < E°L E = 1. Therefore,
0<T,.g1, j=1,2, ..., N. (8-52)

If ¢ is in r‘N’ and if for any j, j =1, 2, eee, N, uo(j; c) > 1, then
0< E° < 1, and therefore

0 <Tjj <l, j=1,2, ..., N. (B-53)

From the Schwartz imequality,

\ 2ial < Vein) Bz < -5
| Therefore,
'rij L1, i,j=1,2, ..., N . (B-55)
Finally, since n'.: n, = nt.: n.,
-1=] -1
| =T..» i,5=1, 2, «eu, N. (B-56)

Tij ji
This result is helpful when applying Theorem 3, since only the values
cof Tij’ i,j in J, 1 » j, need be to be used. Note further, that Tij’
i,j { n, can e found as the clements of the matrix [I + HHt] -1, and

Iij’ i,j 2> ntl, correspend to the elements of the matrix [I + HtH] -1.
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III. PROOF OF THEOREM 3

Statement of Theorem 3

Theorem 3 applies to initial states ¢ in the set I—;q but not in
MN. The set of all j for which iuo(j)' > 1 defines the set J. Without

loss of generality assume that uo(_l) > 1. Then from Equation (3-87)

¢ Siy- T.. g
0,{) = —g—=— 0 (8-57)
i3

where S(j) = sgn. uo(j) - uo(j) from Equation (3-91). The N-vector

3 is given by
[‘ ~
gj(l)

. . (3-58)

(0%
1]

Son

Theorem 3 states that

() =1 (B-59)

if, for all j in J,
() + 52(1) >1 (8-60)

and c' = c - El is in the set

N

e = ) u@ b [eD] <L =23, e, N
32
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Proof of Theorem 3

This prcof is based on the work of Stubberud and Swiger (36, page
405). The correction ge must lie on the boundary of UN-n’ so that for
at least one j in J, ge(j) = sgn. u2(j) - v°(j). From Equation (B-50),

the vector gj +u [_g_e-- 53] has a first component,

g(l) - gj(l) +p [ge(l) - gj(l)] (8-62)

equal to g(l) =1 = uo(l) for some value of p, and has an energy
correction cost less than or equal to that of g_e. But since c¢' is in
I_I;:l > this value of u gives the corresponding vector Ee in UN-—n'
Therefore ge(l) =1 - uo, and ue(l) = 1.



APPENDIX C
SYMBOLISM

Only frequently recurring symbols are included below: the meaning
of any other notation should be apparent from the accompanying text.
The underscoring of a symbol represents vector notation; the subscripted
symbol without underscoring represents the components of the corresponding
vector. The letters i, j, k, m, and p always represent either an integer
or zero, while y and o are used as arbitrary constants. Capital roman
letters usually represent matrices or particular sets: the exception
being when A, B, C, Af, B and C are used to denote general regions of
interest in the figures. The symbol 0 is used to represent the corre-

sponding scalar, vector or matrix, the particular use in the text is

apparent.
I. LIST OF SYMBOLS
SYMBOL MEANING
a The n-vector, consisting of the first n members of the
input sequence, with components 215 85y ce0y A -
g? The n~vector of the first n members of the linear energy
. . . o o o
optimum input sequence, with components al, By eeey an.
b The (N-n)-vector of the last (N-n) input sequence members,
. o .0 o
with components b_, b2, ceos bN-n'
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o

NN

([-¥

267
MEANING

The state of the plant in ‘ff -space, with components s
Cgs sees C o

Points in a one-dimensional ‘Cf -space, defined by Equation
(5-76), page 202.

The forcing vectcr of the continuous plant, with components
dl’ dz, coesy dn'

The 1 x N matrix, [gjlg ng’ cecs Sjj, cans SjN] .

The base for natural logarithms.

A vector feedback function.

A particular fuel conpumption, or a scalar feedback
function.

Forcing vector of the discrete plant.

The j-th invariant vector, defined in Equation (A-28),
page 245, with components hjl’ hjZ’ cioy hjne

The length (Euclidean norm) of the j-th invariant vector,
defined in Equation (2-46), page 24.

The order of the plant.

Number of members of the set k.

A 1l x N matrix, the j-th row of the matrix H, defined in
Equation (3-56), page 94.

The j-th canonical vector, defined in Equation (A-19),

page 239, with compdgnents rjl’ rj2’ eeey L.

jn

Laplace transform variable.
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b

N-n

C{(s)
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MEANING

The transpose of a matrix or the time.

The N-vector representing the discrete plant input
sequence.

The linear minimum energy input sequence.

The constrained minimum energy input sequence.

The constrained minimum fuel input sequence.

The plant input.

The plant state vector, an n-vector, with components
xl(t), xz(t), cees xn(t).

The state vector at time t = kT.

The i~th member of Eo when the initial state is c = Ej'

The set, in ,AL\-space, of all a whose members satisfy
Equation (4-21), page 142,

The map of A in :E5 -space.

The set in()< -space, ccmposed of all the o that satisfy
Equation (3-52), page 92.

The map of An in ﬁ -space.

A set, in £5 -space, of all b whose members satisfy
Equation (4-22), page 142,

A set, in /ES -space, composed of all the B that satisfy
Equatiorn (3-53), page 92.

The n x N matrix of tke first N canonical vectors, Ej'

I.aplace transform of plant output.
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SYMBOL

C(+i,+3)

C, (+i,+9)

G(T)

GP(S)
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MEANING

The cone in '62 -space generated by the line L(+i,+j),
see page 31,

The cone in 'tf -space generated by the line Lthi,ij),
see page 40.

The energy cost, defined in Equation (1-6), page 9.

The energy cost associated with go.

The energy cost associated with gﬁ.

The fuel cost, defined in Equation (1-7), page 9.

The fuel cost associated with a, defined by Equation
(4-25), page 143.

The fuel cost associated with b, defined by Equation
(4-26), page 143.

The set of all initial states, ¢, whose linear minimum

1

fuel sequence satisfies the saturation constraint.

The n x n state transition matrix, see page 237.

The transfer function of the continuous plant.

The n x (N-n) matrix whose columns are the last N-n
invariant vectors. The i,j-th element of H is the i-th
component of the (n + j)-th invariant vector,‘gj, hji'

The identity matrix of the same order as the matrix with
which it may be associated.

The set of integers j for which luo(j)

> 1.

The set of integers k, for which h_1lies on BSN(f).
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L(i,3)

L_(i,3)

5(3)

T, .
1]

270
o MEANING

The set, in /)L\-space, of all 3? satisfying Equation
(3-31), page 84.

The line p Ei + (1 - p) .llj’ 0<&p €1, joining any pair
of points Ei andlhj in a two-dimensional fz -space.

The 1inep§i+ (1 - Bj’ 0gp<g1l, i,j in K, in a two-
dimensional fi -space, and which belongs to BSN(l).

The set, in tf -space, of all initial states whose linear
minimum energy input sequence satisfies the saturation
constraints, defined by Equation (3-26), page 80.

The number of sampling periods for the deadbeat control.

The n x (N-n) matrix whose columns are the last (N-n)
canonical vectors defined in Equation (2-9), page 19.

A polygonal region in 'ff -space, which, for k = N,
N-1, ..., 1, defines the feedback required for the
solution of the constrained minimum fuel problem.

The n x n matrix whose columns are the first n canonical
vectors, Ej’ defined in Equation (2-8), page 19.

Notation convenient in describing the invariant vectors
for second order plants with integration, defined in
Table I, page 252.

The sampling period of the discrete regulator system.

An alternate notation for uo(i,gj), i,j=1, 2, «e., N.
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5,.(D)

IR
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MEANING
The set, in ff -space, of all initial states which can
be taken to the origin in k sampling periods or less
with a fuel consumption F £ f.
The set, in B -space, defined by the intersection of the
sets B and A!.
The set, in /6 ~-space, defined by the intersection of the
sets BN-n and A;.
The Laplace transform of u(t).
The (N-n)-dimensional hyperplanes defined by Equations
(3-73) and (3-74), page 101.
The (N-n)-dimensional hyperplanes defined by Equations
(3-71) and (3-72), page 100.
The n X n matrix [I + HHt] .
The (N-n) x (N-n) matrix {I + Htﬁ} .
The 1 x (N-n) row vector defined by Equations (B-7) and
(B-8), page 256.
The n x 1 correction vector, formed as the first n
components of g .
The optimum correction, which, when added to 30, gives
the first n members of ge.
An (N-n) x 1 correction vector, formed from the last
(N-n) components of g.
An optimum correction, which, when added to 20, gives

the last (N-n) members of _Lle.
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X

o 167 0N X ¢
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MEANING
An optimum correction, which, when added tolgo, gives the
last (N-n) members of.gf.
The point of tangency of the hyperellipsoid with the
hyperplane EtJ.
Scalar constant, given by Y{i = ;\iT.
Scalar constant, given by ¥ = AT.
An N x 1 correction vector with components g(l),

Sw.

The optimum correction for the constrained minimum energy

ceooy

input sequence.

The optimum correction for the constrained minimum fuel
input sequence.

The correction corresponding to the point of tangency
of the hyperellipscid with the hy yperplane O(j) = con-
stant, with components g (1), E(Z cens g(N)

The Kronecker delta, defined by Equation (2-82), page 42.

The boundary of the set SN(f).

The N-n eigenvalues of the matrix [I + HtH] .

The poles of the continuous plant.

A dummy variable. |

The eigenvectors of the matrix [I + HtH] .

The set of all initial states that can be taken to the

origin with an amplitude constrained input sequence.



SYMBOL

rl; cont.

LE
/&\ -space
o
/&\ -space
}3) -space
6 -space
C>< -space
KEB -space

:x:_-space
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MEANING

In 'ff -space, the set is defined by either Equation
(3-27), page 80, or Equation (A-60), page 254. 1In
:xz.-space the set is defined by Equation (A-26), page
243,

The set of all states that can be taken to the origin of
ff -space when only k (not necessarily the first k) of
the invariant vectors are available to represent the

state.,

The energy cost associated with a correctiong » See page

89.
A line in two-dimensional ff -space.

The n-dimensional space with coordinates a 8ys-e00y 2.

13
s . . . o o© o
The n~-dimensional space with coordinates 215 2y, eee, a .

The (N-n)-dimensional space with coordinates bl, bz, cesey

bN-n'

The n-dimensional space with coordinates c Chy seey C_.
1° 72 n

The n-dimensional space with coordinates Q,, Q,, eece, O .
1 72 >

The (N-n)-dimensional space with coordinates Bl, BZ’ eoes

PN-n*
The n-dimensional state space with coordinates X1s Xy een,

X .
n



sat.

sgn. o
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IT. MATHEMATICAL NOTATION

MEANING
The determinant of a square matrix A.
The magnitude of a scalar a.
1 if a >1
= a if ‘al(l .
-1 if a< -1

1 if 20

-1 if a<0
The set A is defined as the set of all x given

by x = B, subject to C.




